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Navigating in the
Turbulent Sea of
Data: The Quality
Measurement
Journey

Robert C. Lloyd, PhD

WHERE AWAY AND WHY ALONE?

In 1892, Captain Eben Pierce offered his friend Joshua Slocum (1844–1909) a ship that

‘‘wants some repairs.’’ Slocum went to Fairhaven, Massachusetts, to find that the ship

was a rotting, old, 37-foot, oyster slooppropped up in a field. It was knownas theSpray.

Slocum spent 13 months repairing this vessel and on April 24, 1895, at the age of 51

years, he cast off from Gloucester, Massachusetts, in the Spray. As he was about to

set off on his voyage a group of people called out to him, ‘‘Where away andwhy alone?’’

Slocum covered 46,000 miles during his solo journey and landed back in Newport,

Rhode Island, on June 27, 1898. His account of this journey, Sailing alone around the

world,was published by the Century Co in 1900.1OnNovember 14, 1909, at the age of

65 years, he set out fromMartha’s Vineyard on another lone voyage to South America,

but was never heard from again.

Like Joshua Slocum, we are also on a journey. We are not battling 30-foot waves,

howling winds, or pirates. But we are facing pressures and challenges that test our

knowledge, experience, and our abilities. The primary question is this: Do you have

a plan to guide your quality journey? Or are you adrift in a turbulent sea of data, hoping

that your numbers meet the internal and external demands that are constantly testing

your navigational skills? Or are you headed in the wrong direction and feeling a little

like Joshua Slocum, adrift alone in a turbulent sea? ‘‘Where away and why alone?’’

WHY ARE YOU MEASURING?

In 1997, Solberg and colleagues2 described what they called the 3 faces of perfor-

mance measurement. They wrote:
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We are increasingly realizing not only how critical measurement is to the quality
improvement we seek but also how counterproductive it can be to mix measure-
ment for accountability or research with measurement for improvement.

The investigators describe in detail various characteristics of performancemeasure-

ment for accountability (what many today call data for judgment), research, and

improvement. These characteristics are summarized in Table 1. The authors’ distinc-

tions between the various aspects of the measurement journey help us quickly realize

that not all measurement is the same. Yet many health care professionals do not think

about why they are actually measuring. You will hear managers or frontline workers

say, for example, ‘‘Look, we need to submit some data on our progress related to

ventilator-associated pneumonias in the neonatal intensive care unit, so find some

recent numbers and send them in.’’ Frequently this means the data submitted may

not be the most recent data, defined in the same way they were defined when they

were first submitted or stratified according to the same criteria used the previous

year. Furthermore, the data may be presented in a manner that works when account-

ability questions are driving the inquiry, but they may be inadequate for questions

related to quality and safety or conducting randomized control trials (RCTs).

Brook and colleagues3 have also helped to clarify the performance measurement

journey. They point out that research (ie, RCTs) designed to determine the efficacy

Table 1

The 3 faces of performance measurement

Aspect Improvement Accountability Research

Aim Improvement of
care

Comparison,
choice,
reassurance,
spur for change

New knowledge

Methods

� Test
observability

Test observable No test, evaluate
current
performance

Test blinded or
controlled

� Bias Accept consistent
bias

Measure and
adjust to reduce
bias

Design to
eliminate bias

� Sample size Just enough data,
small sequential
samples

Obtain 100% of
available,
relevant data

Just in case data

� Flexibility of
hypothesis

Hypothesis
flexible, changes
as learning takes
place

No hypothesis Fixed hypothesis

� Testing strategy Sequential tests No tests One large test

� Determining if
a change is an
improvement

Run charts or
Shewhart
control charts

No change focus Hypothesis,
statistical tests
(t test, F test, c2),
P values

� Confidentiality
of the data

Data used only by
those involved
with
improvement

Data available for
public
consumption
and review

Research subjects
identities
protected
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of a drug, procedure, or treatment is designed to answer questions about efficacy.

Quality improvement research, on the other hand, is directed at improving the

efficiency or effectiveness of processes and their related outcomes.

Anyone engaged in performance measurement needs to be clear about the reasons

for collecting and analyzing data. As shown in Table 1, each of the 3 faces uses

different methods and different statistical techniques to derive conclusions from the

data. If an organization is genuinely interested in leading the way for quality and safety

then it needs to be clear about the reasons for measurement. All too often organiza-

tions say they are focused on quality and safety. Then they discover that their

approach to performance measurement is based primarily on data for accountability

or judgment. This observation is not to suggest that 1 of the 3 faces is more correct

than the other. All 3 faces of performance measurement can be useful. A problem

arises, however, when organizations attempt to mix the 3 faces. This error is what

Solberg and colleagues2 indicate leads to the development of counterproductive

performance measurement systems.

THE QUALITY MEASUREMENT JOURNEY

Aim

The milestones in the quality measurement journey (QMJ) are outlined by Lloyd4 and

summarized in Fig. 1. The first milestone in this journey requires clarity about the aim

of measurement. Measurement should be directly and overtly connected to the orga-

nization’s mission, aims, and objectives. One can easily determine how connected

a team is to the organization’s strategic objectives. The next time you are involved

with a pediatrics improvement team, just pose the following question: ‘‘Can anyone

tell me how this team’s work fits with the organization’s strategic objectives?’’ After

a period of silence, some brave soul might respond, ‘‘I have no idea. We were told

by our boss to improve this process.’’ If the employees of an organization do not

understand and internalize how their work fits into the organization’s overall strategy

for quality and safety, they will end up going through the motions and think they are

‘‘doing quality.’’ They will fail to connect their work to the organization’s purpose

and objectives, and they will go through the motions but never connect the dots.

Aims help answer the question ‘‘Why are you measuring?’’

Concepts

Concepts, the next milestone in the QMJ, stem from clarity around the high-level aims.

Yet the concepts do not represent measurement. They are essentially an intermediate

step designed to help a team set the boundaries for measurement and data collection.

©Copyright 2008  R. C. Lloyd & Associates
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AIM (Why are you measuring?)

Concept

Measure

Operational  Definitions

Data Collection Plan

Data Collection

Analysis ACTION

The Quality Measurement Journey

Fig. 1. Milestones in the QMJ. (Courtesy of R.C. Lloyd & Associates.)
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For example, in Fig. 2 the aim is to have freedom from harm. This type of statement will

be found frequently in an organization’s mission statement. From this aim emerge

various concepts that address different aspects of harm. In Fig. 2, the example is

reducing neonatal unplanned extubations of endotracheal tubes (ETTs). We have

become more specific by saying that we want to reduce unplanned extubation as

a form of harm but this is still not measurement. Reducing unplanned extubation is

a desired outcome. It is not until you move to identifying a specific way to measure

unplanned extubation that you can take the first steps toward reducing it.

Measures

There are numerous options to consider as wemove from a concept to ameasure. The

first one is deciding which measure to select out of all the potential measures.5 Using

the concept of unplanned extubations we might consider the following measures:

� We could count merely the number of unplanned extubations in a defined period

of time (eg, during a shift, during a week, or for the entire month). What does this

give us? Is a count of the number of unplanned extubations the most appropriate

way to measure the concept? This month we had 21 unplanned extubations. Last

month we had 13. What does this tell us? It becomes even more challenging if

you want to compare your performance to that of another hospital in your area

or system. Hospital A’s neonatal intensive care unit (NICU) and B’s NICU each

had 19 unplanned extubations this month. Which one is better? You really cannot

decide which is better or worse in this situation because you have no context for

the absolute numbers. If you are told, however, that hospital A is a large urban

teaching hospital with 50 isolettes and hospital B is a community hospital with

only 10 isolettes, you now have a context and would most likely say that it is

not fair to compare the two because of differences in size, volume, location,

and so forth.
� Next, we could consider computing the percentage of neonates who have an

unplanned extubation. In this case, we would need to define a denominator (ie,

all neonates who could possibly have an unplanned extubation). The numerator

would then be all the neonates who did experience an unplanned extubation

during their stay in the NICU aggregated for the defined period of time (eg,

a week or a month). With these 2 numbers we could compute the percentage

of neonates with an unplanned extubation during the defined time period.

Because an unplanned extubation could happen more than once during a stay

in an NICU, however, the percentage would not capture the multiple unplanned

©Copyright  2008  R. C. Lloyd & Associates
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AIM – freedom from harm 

Concept – reduce neonatal unplanned extubations

Measure – unplanned extubation rate

(unplanned extubations per 1000 ventilator days)

Operational Definitions - # unplanned extubations/ventilator days

Data Collection Plan – monthly; no sampling

Data Collection – unit submits data to QI department  for analysis

Analysis – control chart (u-chart) Tests of 

Change

The Quality Measurement Journey

Fig. 2. Example of a QMJ. Reducing undesired or accidental extubations in neonates.
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extubations. A percentage is based on a binomial distribution. Measuring

unplanned extubations with a percentage, therefore, means that the team is

not concerned with the specific number of times a baby experienced an

unplanned extubation, but rather if the patient had an unplanned extubation

once or more. The question is simply, ‘‘Did this baby experience an unplanned

extubation, yes or no?’’
� This question leads us to the third option for measuring an unplanned extubation,

a rate. Like a percentage a rate is calculated by having a numerator and a denom-

inator but they are different from the ones defined for a percentage. An

unplanned extubation rate would have as the numerator the total number of

unplanned extubations, including multiples for 1 baby, during a defined period

of time (eg, a shift, a day, a week, or a month). The denominator would then

be the total number of ventilator days in the defined period of time. These calcu-

lations would produce an unplanned extubation rate (eg, 18 unplanned extuba-

tions per 1000 ventilator days). A rate-based statistic has a different measure

in the numerator and the denominator (eg, extubations over days). A percentage

has the same measure in the numerator and denominator but they are merely

different classes of the same variable (neonates experiencing an unplanned

extubation over total neonates on an ETT). Examples of potential measures for

various health care concepts can be found in Lloyd.4

Operational Definitions

Once a team has decided what to measure, they can proceed to the next milestone in

the QMJ, namely building operational definitions. This task is 1 of the most interesting

stops along your journey because it addresses the lack of precision in human

language. According to Deming,6 ‘‘An operational definition puts communicable

meaning to a concept. Adjectives like good, reliable, uniform, round, tired, safe,

unsafe, unemployed have no communicable meaning until they are expressed in oper-

ational terms of sampling, test, and criterion. The concept of a definition is ineffable: It

cannot be communicated to someone else. An operational definition is one that

reasonable men can agree on.’’

Operational definitions are not universal truths. They are merely ways to describe, in

quantifiable terms, what to measure and the specific steps needed to measure it

consistently. A good operational definition has the following characteristics:

� It gives communicable meaning to a concept or idea
� It is clear and unambiguous
� It specifies the measurement method, procedures, and equipment (when

appropriate)
� It provides decision-making criteria when necessary
� It enables consistency in data collection.

Again, using the concept of an unplanned extubation, it is necessary to ask, ‘‘What

is the operational definition of an unplanned extubation?’’ All unplanned extubations

are not the same. There could be a partial extubation or a complete extubation.

What is the difference between a partial extubation and a complete extubation?

What if the tape holding the ETT came loose and the tubing sags a little on 1 side?

Is this a partial extubation? Do we all agree on the characteristics of a partial versus

a complete extubation? If we sent out 3 people to collect data on unplanned extuba-

tions would they all define a partial extubation in the same way? Would the data be

valid and reliable? Could we combine the data from the 3 people and have confidence
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that we were comparing apples with apples? If our operational definition of a partial

extubation met the 5 criteria listed earlier for a good operational definition, our data

would most likely be consistent from person to person. If, on the other hand, the 3

people did not use consistent operational definitions, you would end up with fruit salad

rather than apples compared with apples. Additional detail on the critical role of oper-

ational definitions plus examples can be found in Lloyd4 and Provost and Murray.7

Data Collection

After reaching consensus on the operational definitions for your measures the next

milestone in the QMJ (see Fig. 1) is to develop a data collection plan and then go

out and gather the data. These 2 steps in the QMJ frequently run into roadblocks

because team members or improvement advisors are not well trained in the methods

and tools of data collection. The major speed bump at this point in your journey,

however, is that most people wait until it is time to collect the data before they start

thinking about it. A well-developed data collection plan saves you time, effort, and

money. A few key questions to consider at this junction are as follows4:

� What is the rationale for collecting these data rather than other types of data?
� Will the data add value to your quality improvement efforts?
� Have you discussed the effects of stratification on the measures?
� How often (frequency) and for how long (duration) will you collect the data?
� Will you use sampling? If so, what sampling design have you chosen?
� How will you collect the data? (Will you use data sheets, surveys, focus

group discussions, telephone interviews, or some combination of these

methods?)
� Who will go out and collect the data? (Most teams ignore this question.)
� What costs (monetary and time costs) will be incurred by collecting these data?
� Will collecting these data have negative effects on patients or employees?
� Do your data collection efforts need to be taken to your organization’s institu-

tional review board for approval?
� Do you already have a baseline?
� Do you have targets and goals for the measures?
� How will the data be coded, edited, and verified?
� Will you tabulate and analyze these data by hand or by computer?
� How will these data be used to make a difference?

Besides having a serious dialog about these questions, there are 2 key skills needed

during this part of your journey. The first is stratification and the second is sampling.

Stratification is the separation and classification of data into reasonably homoge-

neous categories. The objective of stratification is to create groupings that are as

mutually exclusive as possible. Such groupings are intended to minimize variation

between groups and maximize variation within a group of similar patients, procedures,

or events. Stratification is also used to uncover patterns that may be suppressed when

all of the data are aggregated. Stratification allows understanding of differences in the

data that might be caused by:

� Day of the week (Mondays are different from Wednesdays)
� Time of day (turnaround time [TAT] is longer between 9 AM and 10 AM than it is

between 3 PM and 4 PM)
� Time of year (we treat more patients with influenza in January than June)
� Shift (the process is different during day shift than during night shift)
� Type of order (short turnaround time [STAT] vs routine)
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� Weight of the baby
� Type of machines or equipment.

Stratification is more of a logical issue than a statistical one. It requires talking with

people who have subject matter expertise, knowing how the process works, and

where pockets of variation may exist.

Returning to our example of unplanned extubation we might ask the following

stratification questions:

� Does it matter if the baby is secreting fluids that could affect the tape being used

to hold the ETT in place? If so, then we might stratify by mild, moderate, or

copious amounts of fluid.
� Does the activity level of the baby affect unplanned extubation? If the answer is

yes, then we might consider stratifying by mild, moderate, or high levels of

activity, or use an activity index.
� What if a hydrocolloid dressing was placed across the neonate’s philtrum before

taping the ETT to the infant? Does a hydrocolloid dressing make a difference in

unplanned extubations?
� Does the type of tape used to hold the ETT in place matter? If it does, then should

we stratify by the type of tape (brand A vs brand B)?
� Finally, does it matter if we apply the tape to the baby’s face in an H or Y pattern?

If the NICU staff believe that the taping pattern makes a difference, then we

should stratify on this characteristic also.

Stratification is critical especially if you think that certain factors may differ depend-

ing on the characteristic (or stratum) being used in the measurement. Once the data

have been collected, it is usually too late or too time consuming to try to separate

the stratification issues that may arise. Further details and examples of stratification

can be found in Lloyd4 and Provost and Murray.7

Sampling is the second key skill needed during the data collection stage of your

journey. Sampling is an efficient and effective way to gather data when you: (1) do

not need all the available data, and (2) do not have unlimited resources (time,

effort, and money). First, consider the volume issue. Each day a typical hospital

processes hundreds of complete blood counts (CBCs). If you are interested in

TAT for CBCs, you do not need to analyze all 293 tests done on Monday each

day to get a good picture of the TAT for that day. When you have these many

data (ie, 293 tests during 1 day) you might consider stratification into day, after-

noon, and night shifts; then stratify further to sort out STAT and routine test

requests for each shift. We could then select a stratified random sample from

each shift that also lets us know how STAT and routine TATs varied within the

shift. In this case, a sample of 15 CBCs would be sufficient to analyze the varia-

tion on each day. Analyzing all 293 TATs is not necessary. A well-designed

sampling strategy will work well.

The second reason to sample is to conserve resources. Imagine that you wanted to

collect data that required 3 staff nurses to record 4 different measures on each baby in

the NICU. This effort represents an expensive proposition. Rather than collect the 4

measures on all babies, you might consider developing a sampling plan to select 3

to 5 babies a day, or select a random day of the week on which to gather the data.

Sampling provides a parsimonious approach to data collection. The critical question

is how to draw appropriate samples.

There are 2 basic major types of sampling: probability and nonprobability. The

details on the advantages and disadvantages of the various sampling approaches
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can be found in Lloyd4 and Provost and Murray.7 Also you can find practical discus-

sions of sampling methods in any basic text (old or new) on statistical methods or

research designs.

Probability sampling methods are based on a simple principle: within a known pop-

ulation of size n, there is a fixed probability of selecting any single element (ni). The

selection of this observation (and the remaking members of the sample) must be

determined by objective statistical means if the process is to be truly random (not

affected by judgment, purposeful intent, or convenience). There are 4 basic

approaches to probability sampling:

- Systematic sampling, which is achieved by numbering or ordering each element in

the population and then selecting every kth element. The key point that most people

ignore when pulling a systematic sample is that the starting point for selecting every

kth element should be generated through a random process. For example, if you

were evaluating how long it takes to get a newborn baby from the delivery room

to the NICU, and you wanted to draw a systematic sample, youwould pick a random

number between 1 and 10 (eg, 7) and then start observing the time of every kth baby

after the seventh one. If you said, ‘‘Let’s start at the first baby and then take every

10th baby to check the time it takes from delivery to the NICU’’ you would poten-

tially be introducing bias. A random starting point is critical to making systematic

sampling a form of probability sampling.
- Simple random sampling is accomplished by giving every element in the population

an equal and independent chance of being included in the sample. A random

number table or a random number generator in a computer program is usually

used to develop a random selection process.
- Stratified random sampling results when stratification is applied to a population;

then a random process is used to pull samples from within each stratum. The

CBC example presented earlier provides an illustration of this approach.
- Stratified proportional random sampling is more complicated because it requires

figuring out what proportion each stratum represents in the total population, then

replicating this proportion in the sample that is randomly pulled from each stratum.

To successfully use this approach, you need to have sufficiently large populations

that can be divided into smaller stratification levels, yet still have enough data from

which to draw an appropriate sample. For example, if you stratify all deliveries by

age, race, and prior deliveries within the last 30 days, you may have a category

of Hispanic women more than 40 years old who had a previous cesarean section

that contains only 2 patients. In this case, you have stratified by so many levels

that you have reduced the number of patients to a point that sampling does not

make sense.

Nonprobability sampling methods are usually used when the researcher is not inter-

ested in being able to generalize the findings to a larger population. The basic objec-

tive of nonprobability sampling is to select a sample that the researchers believe is

typical of the larger population. A chief criticism of these approaches to sampling is

that there is no way to factually measure how representative the sample is of the total

population under consideration. Samples pulled through nonprobability designs are

assumed to be good enough for the people drawing the sample, but the finding should

not be generalized to larger populations.

- Convenience sampling is the classic man-on-the-street interview approach to

sampling. In this case, a reporter may select 10 people standing on the train plat-

form (who look interesting or approachable) and ask them what they think of the
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national health care debate and the public option. Although these interviews may

provide interesting sound bites, they should not be used to arrive at a conclusion

that this is how the general public feels about the issue.
- Quota sampling is frequently used with convenience sampling. When this approach

is used, the reporter knows that they need to get a total of 2 sound bites (the quota)

for the producer to use. So the reporter focuses on obtaining these 2 interviews as

the quota. This technique is used frequently in health care settings, when a quota of

n charts orm patient interviews is set as the desired amount of data. There are steps

that can be taken in developing quota samples8 to ensure reasonably robust data.

Most of the time these steps are not followed, and the quota sample represents

a weak and biased approach to sampling.
- Judgment sampling is frequently used in quality improvement initiatives. Judgment

sampling relies on the knowledge of subject matter experts. These individuals can

tell you when the performance of a process varies and when this variation should be

observed. For example, if the admitting clerk tells you that patients bunch up

between 08:30 and 09:30 AM, and that this is a different process than what she

observes between 15:00 and 16:00 PM, then we should consider sampling differ-

ently during these 2 time periods. Similarly, if a staff nurse tell you that ‘‘Things

get crazy around here at 11:00 due to discharge timing,’’ we would want to create

a sampling plan for ‘‘crazy time’’ and ‘‘noncrazy time.’’ The critical point for judg-

ment sampling is that the person offering the judgment needs to be a subject matter

expert on the process and how it works. Otherwise, bias increases dramatically in

this form of sampling.

Building knowledge in sampling methods is 1 of the best things that someone can do

toenhancedatacollectionprocesses.Goodsampling techniqueshelp toensure theval-

idity and reliability of the data that are taken to the next milestone in your QMJ analysis.

Analysis

How you analyze your data depends on a critical question: Will you approach data

analysis from a static or dynamic perspective? Deming9 labeled these 2 approaches

as enumerative (static) and analytical (dynamic). He pointed out that quality improve-

ment studies are best approached from an analytical perspective. Yet, most health

care professions have received statistical training that is grounded solely in static

approaches to data analysis.

Static approaches are designed to summarize a characteristic of the data with

a single measure that is fixed at a single point in time. The descriptive statistics used

include measures of central tendency (mean, median, and mode) and measures of

dispersion (minimum, maximum, range, and standard deviation). Once the descriptive

statistics have been computed the next step in the static journey is to compare 2 or

more data points to find out if they are statistically different. In this example, techniques

such as c
2, Student t test, analysis of variance, or correlation/regression analyses are

used to determine if 1 data point is different from another. Statistical tests of signifi-

cance, usually determined by a P value, are the standard method to verify differences.

The analytical approach to data analysis stands in contrast to the static approach.

Analytical methods are based on statistical process control (SPC) methods. This

branch of applied statistics was developed by Dr Walter Shewhart in the early

1920s while he was working at Western Electric Co.10 The primary SPC tools are

the run and control charts. Statistical analysis conducted with SPC methods looks

at variation in a process or outcome measures over time, not at a fixed point in

time, or compares 2 data points and asks if they are statistically different.
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Because variation exists in all processes (eg, consider morning commute time), the

use of run charts and Shewhart control charts allows the researcher to analyze data as

a continuous stream that has a rhythm and pattern. Statistical tests are used to detect

whether the process performance reflects what Shewhart classified as common

cause variation or special cause variation. Decisions about improvement strategies

and their effects are based on understanding the type of variation that lives in the

process, not on whether 1 data point is different from another. SPC charts, therefore,

are more like the patterns of vital signs seen on telemetry monitors in the NICU.

Run Charts

A run chart provides a running record of a process over time. It offers a dynamic

display of the data and can be used on virtually any type of data (eg, counts of events,

percentages, rates, or physiologic measures). Fig. 3 shows the layout for a typical run

chart. The measure of interest is always plotted along the y-axis, whereas the x-axis is

reserved for the subgroup or unit of time used to organize the data. Day, week, month,

shift, or even patient are typical units that are placed on the x-axis. Because run charts

require no complex statistical calculations, such as sigma limits, they can be under-

stood easily by everyone. The major drawback in using run charts, however, is that

they can detect some but not all special causes in the data.

The first step in analyzing a run chart is to understand what is meant by a run. A run

is defined as 1 or more consecutive data points on the same side of the median. When

you are counting runs, you should ignore points that decrease directly on the median.

Fig. 4 shows the number of runs on the chart shown initially in Fig. 3. An alternative

way to count the number of runs is to examine the number of times the sequence

of data points crosses the median and add 1. If you count the number of circled

runs, or if you add 1 to the number of times the data cross the median, you get the

same number: 14. So, in Fig. 4, there are 14 runs.

Once the number of runs is identified, you can then decide if the chart indicates the

presence of common cause (random variation) or special cause (nonrandom variation).

Four simple run chart rules are used to detect the 2 types of variation. The tests include:

� A shift in the process (6 or more consecutive data points above or below the

median)

Fig. 3. Elements of a run chart.
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� A trend (5 or more consecutive data points constantly going up or down)
� Too many or too few runs (determined by using a table that shows the number of

runs expected for a given data set)
� An astronomical data point (this is a judgment call to decide if there is 1 or more

data points in the set that seem to have an extreme variation).

Fig. 5 provides a visual display of these 4 run chart rules. The run chart rules are

applied to the chart shown in Fig. 6.

The box next to Fig. 6 shows how the run chart would be analyzed. There are 29 total

data points on the chart. Two of the data points are on the median so they are not

counted. This assessment leaves 27 useful observations (data points not on the

median). When you look up 27 useful observations in a table,11 you will see that the

Fig. 4. Determining the number of runs.

Fig. 5. The 4-run chart rules.
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lower number of runs for 27 data points is 10 and the upper number of runs is 19. This

calculation indicates that if the data reflect random variation, there should be between

10 and 19 runs. If the number of runs was less than 10 or more than 19 it would indicate

that the data set has either too little or too much variation. Fig. 6 contains 14 runs that

decrease within this range, so we know that at least for this test (too few or too many

runs), the chart shows random variation (ie, nothing special is observed).

If we apply the trend test (5 data points constantly going up or down) we do not find

such a pattern. We do observe a shift in the data, however. A shift is 6 or more data

points on the same side of the median. The fourth run from the left contains 6 data

points and indicates a statistically significant shift downward in the data (ie,

a nonrandom pattern). Another way of interpreting this finding is that for this many

data points (n 5 27) we should not see data hanging in a run above or below the

centerline. When it does (in this case 6 data points below the median), we have a signal

that the process does not display random variation. The appropriate management

decision in this case is to investigate why we had pounds of red bag waste significantly

lower than at other points in the data collection period for 6 weeks in a row. Did we

Fig. 6. Applying the run chart rules. (Adapted from Provost L, Murray S. The data guide.
Austin [TX]: Associates in Process Improvement and Corporate Transformation Concepts;
2007. p. 3–15; with permission.)
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have fewer patients? Were fewer procedures performed?Were more staff on vacation

during this period? Because the goal is to reduce the amount of red bag waste, we

would like the process to function at lower levels. So, what does it take to shift the

entire process average (the median in this situation) to a more desirable level? This

is an improvement question for a team to investigate.

The last run chart test determines if there are astronomical data points present.

Remember that in any given data set, there will be a high and low data point. These

points are not necessarily astronomical. Rule 4 in Fig. 5 shows an astronomical

data point. In Fig. 6, some might conclude that point A or point B is astronomical.

Neither of these points is astronomical because they essentially balance each other

out. If you had only point B on the chart and point A was nuzzled in the midst of the

rest of the data, then point B might be an astronomical data point. Another way to

look at this issue is to imagine that all the data points were pushed to the far right

side of the chart to form a distribution. The data in Fig. 6 would form an almost perfect

normal distribution, with points A and B lodged in the outermost tails of the normal

curve. In conclusion, the management decision with these data rests on the answers

to 2 important questions: (1) Are we comfortable that, on average, about 4.6 pounds of

red bag waste is produced each shift (shift is the unit of time across the x-axis)?; and

(2) Are we willing to accept the variation in the process? A ‘‘No’’ response to either of

these questions would indicate the need for improvement.

Shewhart Charts

Although most people refer to control charts as the primary SPC tool, the appropriate

terminology is actually Shewhart charts, in honor of Dr Walter Shewhart, who devel-

oped the fundamental aspect of the charts in the early 1900s while he was working

at Western Electric Co.10 In 1931, Shewhart published his classic work, Economic

control of quality of manufactured product. This book has served as the foundation

for all subsequent work in SPC.

Shewhart charts are preferred to run charts because they:

1. Are more sensitive than run charts
� A run chart cannot detect special causes that are a result of point-to-point vari-

ation (the median of the run chart is replaced with the mean on a Shewhart chart)
� Tests for detecting special causes can be used with control charts, whereas the

run charts are able to identify random or nonrandom patterns in the data

2. Have the added feature of control limits, which allow us to determine if the process

is stable (common cause variation) or not stable (special cause variation)

3. Can be used to define process capability (which run charts cannot do)

4. Allow us to more accurately predict process behavior and future performance.

Like the run chart, Shewhart charts are plots of data arranged in chronologic order

(Fig. 7). The mean or average is plotted through the center of the data; then the upper

control limit (UCL) and lower control limit (LCL) are calculated from the inherent vari-

ation in the data. The control limits are not set by the individual constructing the chart.

If appropriate, the individual making the chart can place specification limits or a target

on the chart to determine how well the actual variation matches the desired perfor-

mance of the process.

Shewhart was keenly interested in trying to understand the scientific basis for statis-

tical control. As he observed the world around him, he realized that certain types of

variation (common cause variation) were part of the normal function of life. At other

times, however, he observed that variation was not normal and random, but a result
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of special or assignable causes. From Shewhart’s perspective, the challenge was to

distinguish 1 type of variation from the other. In 1931 he wrote:

A phenomenon will be said to be controlled when, through the use of past expe-
rience, we can predict, at least within limits, how the phenomenon may be
expected to vary in the future. Here it is understood that prediction within limits
means that we can state, at least approximately, the probability that the observed
phenomenon will fall within the given limits.

This definition provides a verbal description of the purpose of a Shewhart chart:

prediction of the future. The question that most people ask at this point, however, is

‘‘Okay, I understand what Shewhart is trying to tell us, but I do not understand where

these control limits come from.’’ If you are asking this question, it is a sign that you are

comfortable with the analytical concept of variation and ready to proceed with some of

the more technical aspects of SPC. If, on the other hand, you would like to read more

about understanding variation you may want to review Provost and Murray,7 Lloyd,4

Wheeler,12 and Duncan.13

The technical aspects related to the Shewhart charts are numerous and too involved

for the space limitations of this article. There are, however, several key points that

need to be highlighted. The reader can then decide if a deeper dive into the theory

and mechanics behind the Shewhart charts is required. Additional details on SPC

methods can be found in Refs.4,7,12,14–19

The first step in applying Shewhart charts to your work is to decide if your data can

be classified as variables or attributes. This consideration is not an issue with run

charts because there is only 1 way to make a run chart and you can place any type

of data on a run chart without distinguishing whether those data are characterized

as a count, a percentage, or a rate. It does make a difference with the Shewhart charts,

however, because there are different types of charts for different types of data.

Variables data (sometimes referred to as continuous data) can take on different

values on a continuous scale. These data can either be whole numbers, or they can

be expressed in as many decimal places as the measuring instrument can read.

Examples of continuous data include time in minutes, weight in grams, length of

stay, blood sugar levels, total number of procedures, or total number of discharges.

Attributes data, on the other hand, are basically counts of events that can be

Fig. 7. Elements of a Shewhart chart.
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aggregated into discrete categories (eg, acceptable vs not acceptable, infected vs not

infected, or late vs on time).

It is helpful to distinguish 2 types of attributes data. The first type involves counting

the occurrences and the nonoccurrences of an event and reporting the number or

percentage of defectives. An example would be the percentage of neonates who

had an unplanned extubation during their stay in the NICU. In this case, you know

the occurrences (total number of unplanned extubations) and you know the nonoccur-

rences (total number of babies with an ETT). The ability to obtain a numerator and

a denominator allows you to calculate the percentage of incomplete patient charts.

There are times, however, when you know the occurrences but you do not know the

nonoccurrences. At first this may seem like an anomaly, but there are many situations

in health care that have this characteristic. For example, on a given day you can count

the number of patient falls but you do not know howmany ‘‘nonfalls’’ there were. Simi-

larly, you can count the number of needlesticks but you do not know how many ‘‘non-

needlesticks’’ occurred. Counts of this nature are usually regarded as defects,

compared with defectives. For many students of SPC this distinction between defec-

tives and defects requires a little soaking time to fully absorb. This may be 1 of the

areas that you bookmark for further study and consideration.

Once you know the type of data you have collected, it is time to decide which control

chart is most appropriate for your data. There are basically 7 different control charts,

as summarized in Fig. 8. Note that 3 of the charts relate to variables data, whereas 4

charts are appropriate for attributes data.

The Shewhart decision tree shown in Fig. 9 provides an algorithm that many find

useful when deciding which chart is most appropriate for their data. The successful

use of the decision tree requires understanding the following terms: subgroup, obser-

vation, and area of opportunity. These terms are defined in Table 2. Note that

subgroup and observation relate to all the charts, whereas the area of opportunity is

pertinent to only the attributes charts.

Of these 7 charts, health care data are most often displayed on 5 of the charts.

These include X bar and S chart, XmR chart (individuals chart), the p-chart (percent-

ages or proportions), the c-chart, and the u-chart (rates). Specifically, applications

and examples of the use of these charts can be found in Provost and Murray,7 Lloyd4;

Carey,15 and Carey and Lloyd.16

Once you have selected andmade the appropriate Shewhart chart, it is time to inter-

pret the chart. This process is similar to the one we used for determining if the run chart

© 2008  Institute for Healthcare Improvement/R. Lloyd & R. Scoville

There Are 7 Basic Shewhart Charts  

Variables Charts Attributes Charts

• p-chart
(proportion or percent of 

defectives)

• np-chart
(number of defectives)

• c-chart
(number of defects)

• u-chart
(defect rate)

• X & R chart
(average & range chart)

• X & S chart 
(average & SD chart)

• XmR chart 
(individuals & moving range 
chart)

Fig. 8. The basic Shewhart charts. (Courtesy of Institute for Health Improvement.)
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had random or nonrandom data patterns. Because the Shewhart charts perform at

a higher level of statistical precision than the run chart, however, the rules to detect

common or special causes of variation are more precise. There are rules to identify

a shift on a Shewhart chart (8 data points above the centerline rather than 6 on

a run chart) and a trend (6 data points constantly going up or down rather than 5

used on the run chart). There are also new rules that the run charts did not have.

For example 1 of the rules (called a 3-sigma violation) occurs when a data point

exceeds the UCL or LCL. Other rules help to detect what are referred to as abnormal

data patterns, and relate to whether the data are bunching toward the outer regions of

the chart, or hugging the centerline (ie, too many data clustered in close proximity to

the mean). All of these tests are detailed in standard SPC texts.4,7,17,19 In addition,

Fig. 9. The Shewhart chart decision tree. (Courtesy of Institute for Health Improvement.)

Table 2

Key terms in using the Shewhart chart decision tree

Subgroup Observation Area of Opportunity

How you organize your
data (eg, by day, week or
month)

The actual value (data) you
collect

Applies to all attributes or
counts charts

The label of your horizontal
axis

The label of your vertical
axis

Defines the area or frame in
which a defective or
defect can occur

Can be patients in equal or
unequal sizes

May be single or multiple
data points

Can be of equal or unequal
sizes

Can be of equal or unequal
sizes

Applies to all the charts

Applies to all the charts
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SPC software packages automatically mark the presence of special cause variation on

a Shewhart chart either by changing the color of the line when a special cause is

detected or changing the symbol used to denote a data point on the chart.

In addition to the 7 basic Shewhart charts there are 2 other advanced charts that are

appropriate for NICU data. These charts are known as the t-chart and the g-chart.14

These charts are used when you are faced with 2 conditions. First, when you have

small denominators (eg, fewer than 10 observations in the denominator) percentages

can become volatile and show extreme swings in variation. For example, 2 out of 4 is

50% but it is not so strong as 50% that is based on 20 out of 40. Small denominators

can be 1 reason to use a t- or g-chart. The second reason is that events happen so

infrequently that they are considered to be rare. In both these circumstances (small

denominators or rare events), the t-chart (plotting time between events) or the g-chart

(successful cases between ones considered not successful) provide an alternative to

the more traditional p-chart or u-chart. For example, if the unplanned extubation rate

which was normally running about 15 per 1000 ventilator days was reduced to 1 or 2

per 100 ventilator days, you should consider moving the measure to a t- or g-chart. In

this case we would plot the number of days that went by without an unplanned extu-

bation, or the number of cases that had an ETT and never had an unplanned extuba-

tion (ie, a successful application of the ETT during the NICU stay). The goal with either

type of chart is to have ever-increasing accumulation of successes without a failure.

Every time you have a failure (ie, an unplanned extubation), you start counting the

number of days or cases again. This method has been used successfully in

manufacturing plants, construction, or the mining industry, where a sign is placed

outside the work site stating ‘‘147 days without a workplace injury.’’ The next day

the sign reads ‘‘148 days’’ and so on, until an injury on the job takes the counter

back to zero and the count starts all over again.

SPC Examples Using Perinatology Data

Imagine that you are sitting in a meeting designed to review several quality measures

for 2 NICUs within your system. The measures of interest for this meeting include:

� Average ventilator days for all babies with birth weight of 501 to 1500 g
� Catheter-associated bloodstream infections (BSIs) per 1000 line days for infants

with a birth weight of 501 to 1500 g for NICU1 and NICU2.

Now imagine 2 scenarios for this meeting:

� Scenario 1: you are given tabular data
� Scenario 2: you are given SPC charts.

Think about how you would guide the group’s discussion around these measures if

you decided to use scenario 1 and the data shown for average ventilator days shown

in Table 3. What do you conclude from the tabular data? Is the NICU getting better,

staying the same, or getting worse? Do we have any special causes in the data?

Are the data performing at or near expectations (target), or are the data demonstrating

considerable variation and far from target? The tabular data make it difficult to answer

these questions. If, on the other hand, we went into the meeting using scenario 2 and

distributed the Shewhart chart shown in Fig. 10, we would set up a totally different

context for the group’s discussion. These data reveal the following:

� There is considerable variation in the average ventilator days. The overall average

is 25.4 days; the minimum is 8.2 days and the maximum is 67.3 days. Although
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these summary numbers could be calculated from the tabular data, the Shewhart

chart provides a visual running record of the variation over time, which is lost in

the tabular data.
� With the exception of the last data point (67.3 days), the variation is essentially

common cause.
� The last data point is a special cause (above the UCL) and deserves investigation.

Is this a data entry error? If it is accurate, then why is this average so high?

Remember this is not 1 baby but the average for all 19 babies on a ventilator

for the month of December 2008.
� If a target or other comparative reference data are available, the team could

determine how far from the target the current process is performing.

Figs. 11 and 12 show the second measure (catheter-associated BSIs per 1000 line

days for infants with a birth weight of 501 to 1500 g for NICU1 and NICU2) as a rate

Table 3

Average ventilator days and number of patients by month

Month

Average

Ventilator Days Number of Patients

2003/01 18.9 22

2003/02 8.2 20

2003/03 18.1 29

2003/04 26.6 22

2003/05 28.8 24

2003/06 20 14

2003/07 23.6 13

2003/08 27.6 13

2003/09 13.8 18

2003/10 30.2 28

2003/11 13.5 22

2003/12 32.7 36

2004/01 12.9 18

2004/02 12.7 12

2004/03 22.6 28

2004/04 19.9 28

2004/05 26.2 16

2004/06 19.1 11

2004/07 18.7 17

2004/08 46.5 14

2004/09 36.9 16

2004/10 13.1 22

2004/11 31.4 16

2004/12 18.4 26

2005/01 19 17

2005/02 23.3 29

2005/03 16.1 20

2005/04 19.9 19

2005/05 32.7 23
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(u-chart). Imagine what it would be like trying to make sense out of the tabular data for

these 2 NICUs. But at a glance, you can see that the 2 sites have fundamentally

different patterns. Questions we can ask include:

� Why does NICU1 have somany rates equal to zero, whereas NICU 2 has few zero

points? NICU1 has so many of its data points at zero that this would be a perfect

time to move this measure to a t- or g-chart and track the time between BSIs or

the cases between BSIs. Note that when you have more than 50% of the data at

zero or alternatively at 100%, this observation represents a sign that the t- or

g-charts should be considered. The t- and g-charts would not be appropriate

for NICU2, however.

Fig. 10. Average ventilator days for all babies with birth weight of 501 to 1500 g.

Fig. 11. Catheter-associated BSIs per 1000 line days for infants with a birth weight of 501 to
1500 g for NICU1.
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� Note that the average for NICU1 is low, whereas the mean for NICU is consider-

ably higher. Are these units fundamentally different in size, complexity of

patients, or types of populations being served?
� The measure has shifted downward at NICU2. This finding signals that improve-

ments may have been put in place. We would want to understand what has

caused this downward shift (note the changes in the color of the dots and the

connecting lines, which signal special causes in the data). There is also an oppor-

tunity to define 2 sets of control limits on the chart. One set would be for the left

side of the chart, which is performing at a higher level, and the second set would

be used for the data after they shifted downward.

In summary, the Shewhart charts provide a fundamentally different view of the data.

The charts should enable dialog and learning. Typically, the tabular data lead the team

to engage in shallow levels of learning, boredom, or worse yet, jumping to conclu-

sions. Quality and safety cannot be improved by looking at tabular data and summary

statistics. The context for learning comes when you plot data over time and under-

stand the variation in the entire data set.

Linking Measurement to Improvement

Joshua Slocum was well known for keeping detailed diaries and data on his sailing

adventures. But he did not collect data and measure his progress just to fill the

many lonely hours while circumnavigating the globe. He collected data to help him

make better decisions. Slocum was by all accounts a most intriguing yet enigmatic

individual. What is clear from reading his diaries, however, is that he understood the

linkage between measurement and improvement.

All the preceding milestones and steps in the QMJ are designed to lead to improve-

ment. Data without a context or plan for action give the team a false sense of accom-

plishment. It is not until you identify change concepts that you believe will move

performance in the desired direction and conduct tests of change that the journey

becomes complete. All too often health care managers and leaders see data as the

beginning and end of the journey. These individuals need to spend a little time with

Fig. 12. Catheter-associated BSIs per 1000 line days for infants with a birth weight of 501 to
1500 g for NICU2.
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Captain Slocum to learn the true value of data collection. Data allow us merely to set

the direction of our improvement journey, not define the end of the journey.

The sequence for improvement is shown in Fig. 13. Note that although data are

used throughout this sequence, the primary objective is to start with small tests of

new ideas, build on the success and failures of these tests, and move to testing under

different conditions to determine how robust and reliable the new ideas are. When

sufficient testing has been accomplished, it is time to implement the new ideas and

make them a permanent part of the daily work in the pilot or demonstration area.

Once implementation has been successful, it is time to turn your attention to

sustaining the gains that have been realized and then start to make plans to spread

the improved practices to other locations. Other articles in this issue address the steps

in the improvement journey and should be consulted for additional guidance.
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