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Abstract

Background:  The utility of statistical process control (SPC) methods has received growing

interest in the healthcare community to help improve clinical and administrative processes.

SPC charts are chronological graphs of process data that are used in many other industries to

help understand, control, and improve processes and that, although based in statistical theory,

are easy for practitioners to use and interpret.

Objectives:  The objective of this article is to provide an overview of SPC charts, the differ-

ent types and uses of control charts, when to use each chart type, their statistical performance,

and simple methods for determining appropriate sample sizes.  The intended audience in-

cludes practitioners and healthcare researchers seeking either an introduction to these meth-

ods or further insight into their design and performance.  Methods for dealing with rare

events and low occurrence rates also are discussed.

Methods:  Recent empirical examples are used to illustrate appropriate applications of each

chart type, sample size determination, and chart performance.  Sensitivities are calculated and

tabulated for a wide range of scenarios to aid practitioners in designing control charts with

desired statistical properties.

Conclusions:  Control charts are valuable for analyzing and improving clinical process out-

comes.  Different types of charts should be used in different applications and sample size

guidelines should be used to achieve the desired sensitivity and specificity.  SPC is both a

data analysis method and a process management philosophy, with important implications on

the use of data for improvement rather than for blame, the frequency of data collection, and

the type and format of data that should be collected.  When dealing with low rates, it also can

be advantageous to collect data on the number of cases or the amount of time between ad-

verse events, rather than monthly rates.
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Introduction

This article provides an overview of statistical process control (SPC) charts, the different

uses of these charts, the most common types of charts, when to use each type, and guidelines

for determining an appropriate sample size.  The intent is to provide an introduction to these

methods and further insight into their design and performance beyond what exists in current

literature.  The utility of control charts to help improve clinical and administrative processes

has received growing interest in the healthcare community.  For example, see Splaine et al
[1], Sellick [2], Plsek [3], Benneyan [4], Burnett and Chesher [5], and a comprehensive re-

view in a recent series in Infection Control and Hospital Epidemiology [6, 7].  These meth-

ods are well-established in other industries and have a long history of use for measuring

process performance and improving outcome quality.  Important healthcare applications in-

clude their use to help reduce rates of adverse drug events, surgical site infections, patient

falls, central line infections, surgical complications, and many of other types of iatrogenic

injury and adverse events.

The estimated total annual national costs in the U.S. of such process defects are staggering,

including 770,000 to 2 million patient injuries, 8.7 million hospital days, 44,000 to 180,000

deaths, and $8.8 billion in healthcare costs [8-13].  Studies summarized in the recent National

Academy of Sciences’ Institute of Medicine report, To Err is Human, also estimated that

between 45,000 to 98,000 patients die each year in U.S. hospitals from medical errors, more

than the annual number of deaths in the U.S. from traffic accidents, breast cancer, or AIDS

[14].

It is not surprising that many accrediting and regulatory bodies therefore encourage hospitals

and HMO s to apply continuous quality improvement methodologies to these process con-

cerns, including the use of statistical methods such as SPC.  For example, the Joint Commis-

sion on Accreditation of Healthcare Organizations recently stated their position on the use of

SPC as follows [15]:

An understanding of statistical quality control, including SPC, and variation is es -
sential for an effective assessment process...  Statistical tools such as run charts,
control charts, and histograms are especially helpful in comparing performance with
historical patterns and assessing variation and stability.

A recent paper by several authors from the U.S. Center for Disease Control [16] similarly

stated that

Many of the leading approaches to directing quality improvement in hospitals are
based on the principles of W. E. Deming.  These principles include use of statistical
measures designed to determine whether improvement in quality has been achieved.
These measures should include nosocomial infection rates.

Many epidemiologists also have proposed monitoring infection and adverse event rates con-

tinuously over time in manners that are quite similar to SPC [17-20].  In conventional epide-

miology, in fact, the identification of epidemic and endemic events are related in SPC termi-
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nology to the detection of unnatural and natural variability, respectively.  It also is interesting

that as early as 1942, the late quality pioneer W. Edwards Deming advocated the application

of SPC to disease surveillance and adverse healthcare events in the Journal of the American
Statistical Association [21].

As evident in Splaine et al [1], SPC is as much a process management philosophy as it is a

data analysis method, with several important implications discussed below.  These include

the use of data for learning and improvement (rather than for assigning blame), the frequency

of data collection, the type of data and format in which they should be collected, and the ac-

tions taken based on the results.  While details on the mathematics of control charts appear in

many publications, these topics tend to receive less attention but are equally important to the

successful use of SPC for process improvement.

Quality Control Charts

Overview and Interpretation

Statistical process control charts are chronological graphs of process data that are used to

help understand, control, and improve processes - such as infection control or adverse event

processes - and that, although based in statistical theory, are easy for practitioners to use and

interpret.  While there are several different types of control charts, the general format and

interpretation of the most common and simplest type, called a Shewhart control chart, are

shown in Figure 1.  Some statistic of interest, such as the number of cases of ventilator-

associated pneumonia per 100 device days, is plotted on the chart and interpreted on a

monthly or weekly basis.
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Figure 1.  General Format and Interpretation of a Statistical Control Chart
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The three horizontal lines called the center line (CL), the upper control limit (UCL), and the

lower control limit (LCL) define the central tendency and the range of natural variation of the

plotted values, assuming that the long-term pneumonia rate, in the above example, does not

change.  The control limits are computed statistically based on probability distributions such

as the Gaussian ("normal"), Poisson, or binomial distributions.  As shown in Figure 2 for the

bell-shaped normal distribution, values that fall outside the upper and lower three standard

deviation control limits exceed the range within which almost all of the values (99.73% un-

der the normal distribution) are expected to lie if the process remains unchanged and pro-

duces statistically consistent results.

Clinical or Administrative Value of Interest

Mean

0.9973
(very likely)

ean minus 
3 standard 
deviations

Mean plus 
3 standard 
deviations

.00135
unlikely)

.00135
(unlikely)

Figure 2.  Relation of Control Limits to Underlying Probability Theory (Normal Distribution)

Interpretation of values in the tails or outside the control limits is similar to that of conven-

tional hypothesis tests, namely that these values are statistically significant indications that

the process is producing different results or is not producing outcomes from only one con-

sistent and homogeneous process.  Under the philosophy of quality improvement, the cause

or causes of the process change or inconsistency should be identified and removed in order to

achieve a single, stable, and predictable process (i.e., a "state of statistical control" in SPC

language).  While several different types of charts exist (see below), all are interpreted in es-

sentially this same manner.

In addition to values outside the control limits, there should be no evidence of non-random

behavior between the limits, such as trends, cycles, and shifts above or beneath the center

line.  Various between-limit  rules have been defined to aid in the objective interpretation of

such data patterns, such as those summarized by Splaine et al [1] and Benneyan [4, 7].  Most

of these supplementary rules are based on probability calculations of runs of consecutive val-

ues in various zones of the control chart, thereby improving sensitivity but reducing specific-

ity (see below).  See Duncan [22], Grant and Leavenworth [23], and Montgomery [24] for

further information on the mathematical details of SPC.  Note that control limits should not

be confused with confidence interval limits, but rather are more analogous to prediction lim-

its.
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Uses of Control Charts

It is important to emphasize that control charts have several important, somewhat sequential,

roles in quality improvement work.  These uses are discussed in greater detail elsewhere [7]

and include (see Figure 3):

1. Understanding current and past process performance and its degree of consis-

tency and predictability;

2. Establishing a "state of statistical control" by identifying and removing causes of

unnatural (or "special cause") variation so as to achieve a consistent and predictable

level of process quality over time;

3. Improving a process by identifying and removing causes of natural (or "common

cause") variation and by testing whether interventions result in an improvement; and

4. Monitoring for process deterioration and "holding the gains" by identifying special

causes of unnatural variation when they arise in the future.

Understand Past Performance
 Is process unstable or in statistical control?
 Begin trial control charting

Establish Consistent Process
 Iterative process using trial control charts
 Bring process into statistical control
 Remove sources of unnatural variability until in-control

Improve Stable Process
 Remove sources of natural variability
 Position the average & reduce variability until acceptable
 Test and verify impact of interventions and improvements

Monitor Process for Instability
 Maintain a state of statistical control
 Hold the gains
 Identify & remove special causes of unnatural variability

•
•
•

•

•
•

•
•

•

•

•

Figure 3.  Different Uses of Control Charts
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Establishing a State of Statistical Control

Note that while the latter two uses of control charts - testing and holding the gains - tend to

be the most well-known in many popular quality improvement models, the first two activities

are very important but unfortunately often overlooked or misunderstood.  In many applica-

tions, considerable value exists in "merely" achieving a state of statistical control.  As in

other industries, many healthcare processes will not be stable and consistent when first ex-

amined and will require significant effort to bring them into a state of statistically consistent

behavior (i.e., statistical control).

This activity is referred to as "trial control charting" because of the focus on testing whether

the process is consistent and on attempting to bring it into a state of operation such that it

produces consistent and predictable results.  This iterative process occurs over a period of

time and consists of:

• constructing an initial trial control chart to test for statistical control,

• searching for and removing assignable causes of unnatural variability,

• removing all affected data and recalculating the center line and control limits from the

remaining data (with the addition of new data if available or necessary),

• searching a second time for causes of unnatural variability,

• removing these data and reconstructing the control chart a second time as above, and

• repeating this process as many times as is necessary until a state of statistical control

is reached.

As an analogy, this iterative improvement process is akin to removing rocks above the sur-

face of a pond (i.e., the upper limit), thereby lowering the water level only to identify a next

layer of rocks now exposed above the surface, and repeating this process until a smooth con-

sistent water horizon is achieved.  Note that the trial control charting process typically is

conducted retrospectively on historical data with new data added as they become available, in

essence investigating if the process has been in statistical control in the past and up to the

present time.  In many cases, after causes of inconsistent variation are removed, the affected

time periods of data can be determined and removed from the working data set that is used to

compute and re-compute the control limits, so that it is not necessary to discard all historical

data and collect an entire new data set.

Practitioners sometimes are discouraged in this first phase of quality improvement by the

amount of time and effort required in some cases to achieve a predictable process.  It is im-

portant to emphasize, however, that this is a critical necessary first step and that only when a

state of statistical control has been established can it be stated that a single process even ex-

ists.  This is because without statistical control, there is no consistent process producing the

outcomes; if there were, by definition the process would exhibit a state of statistical control.

Until then statements about quality levels, projections of occurrence rates, and predictions

about future outcomes all are invalid and misleading, despite any amount of wishful thinking

to the contrary.
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Monitoring and Improving

Once a stable process exists (i.e., a state of statistical control has been established), the con-

trol chart is used to monitor the process for signals that a change has occurred ("special

cause" of "unnatural" variability in SPC terminology) - points outside the control limits or

violations of any of the within-limit rules.  If these are changes for the worse, such as an in-

crease in the ventilator-associated pneumonia rate, then an effort should be made to discover

the causes so that they can be removed and prevented in the future.  Causes of changes for

the better also should be investigated and understood so that they can be implemented on a

regular basis.

While this monitoring activity tends to be the most familiar use associated with control

charts, it also is the most passive use from a process improvement perspective as it is focused

primarily on maintaining the status quo.  It also is important to note that being in a state of

statistical control must not necessarily imply that the process is performing at an acceptable

level, or that the outcome rate is good, and that either an increase or decrease (i.e., an im-

provement) in the outcome rate represents an out-of-control process.  Statistical control is

defined as all data being produced by the same constant process and probability model,

which may or may not have an acceptable mean or variance.

For example, hypothetically it is possible to have a stable and consistent adverse drug event

rate of 50% (1 of every 2 medications), although this obviously would be far from accept-

able.  The improvement focus at this stage now is on the difficult task of identifying changes

to the existent (and consistent) process that will result in improvements.  Changes to the ex-

istent standardized process will be necessary in order to improve outcomes.  The role of con-

trol charts here is to help test and verify if these interventions actually result in the hypothe-

sized benefits, as evidenced by statistical out-of-control signals of improvements.

Types of Control Charts

The most familiar types of control charts, called Shewhart control charts, originally were de-

veloped by Shewhart in 1924, one for each of several types of data that are commonly en-

countered in practice.  Each of these types of data can be described by a statistical distribu-

tion that is used to determine the expected value, theoretical standard deviation, and natural

variation of the data (i.e., the center line and control limits).  Examples of the most common

types of data distributions - the normal, binomial, Poisson, and geometric - are shown in Fig-

ure 4.  While many other types of data exist, these distributions will be familiar to many

readers as very common and appropriate in many applications.

One of the most common difficulties that practitioners have in using SPC is determining

which type of control chart they should construct.  As shown in Table 1, the chart type to use

in any particular situation is based on identifying which type of data is most appropriate.  For

example, the three most common types of control charts should be used in the following

situations:
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• Either an np or a p control chart should be used when analyzing discrete data that are

distributed according to a binomial distribution;

• Either a c or u control chart should be used when analyzing count data that are dis-

tributed according to a Poisson distribution;

• Both an X-bar and an S chart should be used together for continuous data that are

distributed according to a normal distribution.

Figure 4b: BinomialFigure 4a: Normal

Figure 4c: Poisson Figure 4d: Geometric

Figure 4.  Four Common Types of Data Distributions

Many standard statistical packages will construct these types of control charts, as well as plot

histograms or provide mathematical "goodness-of-fit" tests to help verify the type of distri-

bution that fits a particular data set.  See Benneyan [4, 6] for further discussion on the dis-

tinctions between each type of data and examples of each type of control chart.

Figure 5 illustrates Xbar and S charts for the mean and standard deviation, respectively, of

the time from decision to the first incision for emergent Cesarean deliveries.  Note that this

process appears fairly consistent with the exception of the three weeks when either the Xbar
or the S chart is out-of-control.  The appropriate first action in this case therefore would be to

investigate what occurred during these time periods to cause these statistically significant dif-

ferences in outcomes.  Both charts are necessary, only for normal data, because the estima-

tion of the Xbar control limits assumes that the standard deviation is in statistical control and

homogeneous and because either the mean or standard deviation can go out-of-control inde-

pendently of the other.  For example, Benneyan [6] describes an experience in which the
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Table 1.  Common Types of Control Charts and Example Applications

Type of
Control Chart

Probability
Distribution

When Appropriate to Use Examples

Xbar and S

(Plot sample

mean and stan-

dard deviation)

Normal (Gaussian) Continuous measurements

with "bell shape"

Note:  Xbar and R sometimes

used as an alternative, al-

though statistical properties

are not as good.  (’Individuals’

chart should be used only as a

last resort for same reason.)

Length of patient waits

Procedure durations

Timing of perioperative antibiotics

Physiologic data

Time from decision to first incision

for emergent Cesarean deliveries

np

(Plot sample

total)

binomial Total number of dichotomous

cases generated by a process

that result in a certain outcome

Note:  Sample size assumed

constant for each sample

Number of surgeries that develop a

surgical site infection

Number of patients who receive an

antibiotic on time

Number of patients readmitted

p

(Plot sample

fraction)

binomial Fraction of dichotomous cases

generated by a process that

result in a certain outcome

Note:  Sample size can change

from sample to sample

Fraction of surgeries that develop a

surgical site infection

Fraction of patients who receive an

antibiotic on time

Fraction of patients readmitted

c

(Plot sample

rate)

Poisson Total number of some event,

where no exact upper bound,

can be more than one event

per patient or sampling unit

Note:  Assumes constant op-

portunity or sampling area in

each time period

Number of patient falls

Number of central line infections

Number of ventilator associated

pneumonias

Number of needle sticks

u

(Plot sample

rate adjusted per

common base)

Poisson Rate of some event, where no

exact upper bound, can be

more than one event per pa-

tient or sampling unit

Note:  Rate is adjusted to av-

erage per some common sam-

pling denominator size

Average number of patient falls per

100 patient days

Number of central line infections

per 100 line-days

Number of ventilator associated

pneumonias per 100 ventilator days

g

(Plot count

between events)

geometric Number of cases or amount of

time between occurrences.

Note:  Particularly useful for

rare events or when rate is low

(e.g., rate < .01)

Number of surgeries between infec-

tions

Number patients between compli-

cations

Number days between adverse drug

events

Number days between needle sticks
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average timing of perioperative prophylaxis was equal to the target of 60 minutes prior to the

1
st
 incision and appeared in statistical control, but the standard deviation was excessively

large and not in-control.  Out of control values on the Xbar or S chart indicate that the proc-

ess mean or standard deviation is not in statistical control, respectively, somewhat analogous

to T and F tests for statistically significant differences in means and variances.

Average Decision-to-Incision Time
(Xbar Chart)

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

Week Number

Standard Deviations of Decision-to-Incision Time
(S Chart)

0

1

2

3

4

5

6

7

8

9

1 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

Week Numbern = sample of 10 charts per week

Figure 5.  Example of Xbar and S Control Chart for
Emergent Cesarean Delivery Decision to Incision Delays

By contrast, the p control chart in Figure 6 illustrates a surgical site infection rate that ap-

pears consistent and in-control but is higher than should be acceptable.  Whereas this p chart

is for the fraction of surgeries that develop infections, an np chart alternatively could be used

for the total number of surgeries to develop infections.  The appropriate action in this case

would be to brainstorm and test process changes that might reduce the infection rate, using

the control chart to verify whether improvement occurs.  The u control chart in Figure 7,

conversely, illustrates a ventilator-associated pneumonia rate that is both in-control and fairly

decent.  While improvement efforts should continue, this chart might be used primarily to

detect increases and "hold the gains".  Because the number of surgeries, device-days, and so
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on typically is not constant in each sample, p and u charts tend to be used more often than np
and c charts, respectively, with the differing sample sizes resulting in control limits that vary

over time (as shown in Figures 6 and 7).
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Figure 6.  Example of p Control Chart of Surgical Site Infection Rate
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Figure 7.  Example of u Control Chart for Ventilator Associated Pneumonia Rate

Note that if the data do not exhibit the appropriate shape and distribution for one of the above

control charts, then an alternative chart should be constructed [25, 26].  As a general rule of

thumb, if a histogram does not exhibit a fairly symmetric bell-shape, such as those shown in

Figures 4a through 4c, then none of the standard charts may be appropriate or sample sizes

may be too small, and further advice should be sought.  As one example, a fourth type of

control chart called g and h charts should be used for count data with a geometric distribu-

tion, which can be useful when dealing with rare events (see below).
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Data and Statistical Issues

Distinctions Between Traditional Measurement and SPC

As the above examples illustrate, several important distinctions exist between traditional

measurement practices for quality assurance and the role of measurement when using SPC

for process improvement.  Most importantly, data on almost all key indicators should be col-

lected and evaluated much more frequently via control charts and closer to the continuous

manner in which they actually are produced, rather than retrospectively in large aggregate

quantities.  For example, a typical current manner of reporting key performance data is to

summarize several aggregate values annually, semiannually, or quarterly such as shown in

Table 2.

Table 2.  Traditional Aggregate Data Format for Reporting and Quality Assurance

Measure 1998 1999 2000

Cesarean Section Births 5.6 / 100 21 / 100 19 / 100

Average Maternity Length-of-Stay 66 hours 58 hours 61 hours

Needle Sticks 98 120 113

Surgical Nosocomial Infections 6.9 / 100 patients 3.4 / 100 patients 4 / 100 patients

Breast Wound Infections 12% 3% 6%

Adverse Drug Events 105 68 83

Methicillin-resistant Staphylococcus
aureus (MRSA)

325 / 1677 (19%) 525 / 1629 (32%) 694 / 1735 (40%)

Ventilator-Associated Pneumonia 21.7 / 1000

ventilator days

14.3 / 1000 ventilator

days

16.5 / 1000

ventilator days

CR BSI 1.7 1.4 3.1

ICU Lengths-of-Stay 4.9 days 5.3 days 5.1 days

Instead, process data now should be collected longitudinally in real-time and in much smaller

samples in the format necessary for control charts shown in Figure 8.  These samples are

called "subgroups" in SPC terminology in order to distinguish them from the total sample of

all data in all subgroups together.  Note that this format and use of data for the purpose of

process improvement is a fundamental change from the format used for the traditional pur-

pose of internal or external reports and documentation.  In many settings, the implication is

that current data collection systems will need to be revised significantly in order to provide

the necessary data in the necessary format.  Subgroup size guidelines also differ from tradi-

tional sample (total) size calculation methods, as discussed below.
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Individual Subgroup Observations

1         2         3         4    .  .  .                   n

Time (Within Subgroups)

(eg, Counts,
Proportions,
Averages,
St. Devs.)

1

2

3
.
.
.
  

k

S
u

b
g

ro
u

p
 N

u
m

b
e
r

Time
(Between

Subgroups)

X k1 X k2 Xk4 X knX k3 . . .

X 11 X 12 X14 X 1nX 13 . . .

X 21 X 22 X 24 X 2nX 23 . . .

X 31 X32 X 34 X 3nX 33 . . .

Subgroup
Statistics

Note:  Samples are called subgroups in SPC terminology.  This example contains k samples of data recorded over
a significant period of time, with each sample containing n values taken over a shorter period of time.  The rate or
other statistic of interest is calculated for each small subgroup sample and plotted on a control chart in real time.

Figure 8.  Longitudinal Data Collection Format for SPC and Process Improvement

Also note that a minimum of at least 25 to 35 subgroups of data collected over time are neces-

sary in order to conclude reliably that a process is in statistical control, a requirement that has

radical implications on how data should be gathered and analyzed within many organizations

and on the frequency of data collection.  Using only aggregate quarterly data, for example, can

take 6 to 9 years to verify a state of statistical control.  Many current data systems therefore

are woefully insufficient for the purpose of SPC and improvement, whereas plotting smaller

amounts of data on control charts more frequently - weekly or even daily if at all possible - is

a much better approach.  In manufacturing and service applications, values are plotted hourly

or at least daily so that the process can be monitored and controlled in real time.

Chart Calculations and Use of 3 Standard Deviation Limits

The conventional formulae for all Shewhart control charts are based on the expected value

(i.e., the theoretic mean) and the theoretic standard deviation (sigma) of the plotted data,

which are computed differently for each type of data distribution.  For example, the center

line for np charts is set equal to the mean of the binomial distribution with the control limits

equal to the center line plus and minus three binomial standard deviations.  An alternative

approach is to use probability-based control limits calculated so that the probability of falling

between them is some desired value, typically somewhere in the vicinity of 99.73%.  Note

that in the case of normal data both these methods yield the same (good) specificity of 0.9973

for any single plotted value (i.e., the probability that any single in-control value correctly will

be determined to be in-control) or equivalently a false alarm probability of 0.0027.

There also are several more technical rationales for using 3-sigma limits.  From a multiple

comparison Bonferroni-type perspective if a 3-sigma trial Xbar control chart contains 25
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samples of historical data from an in-control process, then the overall probability of at least

one false alarm is α = 1 - (0.9973)
25

 ≈ 0.0654.  That is, the specificity of the overall chart is 1

- α  = 0.9346 (implying, if anything, that perhaps something greater than 3-sigma limits

might be used).  Additionally, a mathematical technique developed to determine the optimal

control limits typically yields results between 2.5 and 3.5 sigma from the CL across a wide

range of applications and costs in many industries, lending the convention of 3 standard de-

viations further justification [7, 24, 27-30].  Further research is needed to determine the ex-

tent to which these conclusions extend broadly to healthcare applications.

In other applications, it periodically is suggested that other limits should be used in order to

obtain a different tradeoff between sensitivity and specificity.  In many industries, therefore,

an additional pair of lines called warning limits sometimes are plotted at two standard devia-

tions above and below the center line in order to provide earlier but less definite warnings of

possible problems (i.e., greater sensitivity but lower specificity).  A typical response to val-

ues falling between the warning and control limits is to start investigating and searching for

assignable causes on a smaller scale and with less urgency than if the control limits had been

exceeded.  See Benneyan [7] for further discussion of these topics.

Subgroup Size Selection and Chart Performance

Like almost any other statistical method, subgroup sizes and sensitivity for control charts are

intrinsically related to one another, with larger subgroup samples producing greater power to

detect process changes - but at the expense of greater sampling cost or of less frequent sub-

groups.  Several guidelines therefore exist to help select an appropriate minimum subgroup

size that will produce decent statistical properties, a reasonably symmetric sampling distribu-

tion, a non-zero LCL, and good sensitivity to detect rate changes or other process shifts.

p and np Charts

For np and p charts, the two most common rules-of-thumb are that the minimum subgroup

size, n, should be large enough so that (rule 1) both

np ≥ 5    and    n(1-p) ≥ 5

are satisfied or equivalently

n
p p p p

  max ,   
min( , )

≥
−









 =

−
5

1

5 5

1

or that (rule 2) both

n
p

≥
−

ln(. )

ln( )

05

1
 and n

p
≥ ln(. )

ln( )

05

or equivalently

n
p p

  
ln(. )

ln max( , )
≥

−[ ]
05

1
 ,
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where p is the expected proportion of cases resulting in the medication error, surgical site in-

fection, or other adverse event being studied.  The first rule ensures a reasonably symmetric

bell-shaped distribution with statistical properties and run rules performance similar to those

for a normal distribution.  The second rule similarly avoids significant skewness and poor

statistical properties by ensuring the control chart will not have a large number (no more than

5% on average) of plotted points clustered at zero or the upper possible bound (1 and n for p
and np charts, respectively).  Sometimes if data are scarce the first rule is relaxed to np ≥ 3

and n(1-p) ≥ 3 and the second to n ≥ ln(.25)/ln(1-p) and n ≥ ln(.25)/lp(p), although these usu-

ally are the lowest that one should consider.

As an illustration, for the surgical site infection rate in Figure 6 of 0.09 (9 out of every 100),

the minimum subgroup size n using the first rule should be between

n ≥ 
5

0 09.
 = 55.6 and 

3

0 09.
 = 33.3,

or using the second rule

n ≥ 
ln(. )

ln( . )
  

.

.

05

1 09

2 996

0943−
= −

−
 = 31.8.

u and c Charts

Similarly, for c and u control charts the two corresponding rules-of-thumb are that the mini-

mum subgroup size, n, should be between

nλ  ≥ 5  and nλ ≥ 3,

or that

n ≥ − ln(. )05

λ
,

where λ is the average number of occurrences per some common unit of calculation (such as

the ventilator associated pneumonia rate per 100 device days or the needle stick rate per 100

patient days).  To illustrate, for the catheter-associated infection rate in Figure 7 of 1.25 per

every 100 catheter days, the minimum subgroup size using the first rule should be between

n ≥ 
  

5

1 25 100. /  days
 = 4.00 x 100 days = 400 catheter days

and

n ≥ 
  

3

1 25 100. /  days
 = 2.40 x 100 days = 240 catheter days,

or using the second rule

n ≥ 
− =ln(. )

. /
  

.

. /

05

1 25 100

2 996

1 25 100 days  days
 = 2.40 x 100 days = 240 catheter days.
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Non-Zero LCL

Note that for p, np, c, and u charts, if the lower control limit is equal to zero then, unless sup-

plementary rules are used (see below), detecting or verifying improvements in the form of rate

decreases will not be possible.  In order for the LCL to be greater than zero, subgroup sizes

80% to 200% larger than result from the above formulae often are required.  The minimum

subgroup size, n, now must be large enough (rule 3) so that for p and np charts

n
k p

p
> −2 1( )

and for u and c charts

n
k>

2

λ
 ,

where k is the number of standard deviations used in the control limits (typically 3).  Addi-

tionally, if the occurrence rate p ≥ 0.5 then in order for the upper control limit of p and np
charts to be able to detect rate increases

n
k p

p
>

−

2

1

so that the UCL will be less than the upper possible bound of 1 and n, respectively.  In the

above two examples, the minimum subgroup size for LCL > 0 (using k = 3) becomes

n > 
3 1 09

09
91 0

2 ( . )

.
.

− =

=  92

for the surgical site infection p control chart and

n > 
3

1 25 100
720

2

. / days
=

=  721

for the ventilator-associated pneumonia u control chart.  Table 3 summarizes the minimum

recommended subgroup sizes for p, np, c, and u charts using these rules for a range of rates.

Note that smaller values of the occurrence rates p or λ  (i.e., higher quality processes) result in

larger required minimum subgroup sizes, presenting the ironic dilemma that better processes

require more data to control them.  Performance of these charts to detect rate decreases using

smaller subgroup sizes and supplementary rules is discussed below.
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Table 3.  Recommended Minimum Subgroup Sizes

Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3 r  = .75 r  = .5 r  = .25

0 .0025 2 0 0 1 1 1 9 7 3 5 9 2 0.025 2 0 0 1 2 0 3 6 1 0.1 1 3 5 1 9 0 0 5 4 1

0.0050 1 0 0 1 5 9 8 1 7 9 2 0.050 1 0 0 6 0 1 8 1 0.2 3 3 8 2 2 5 1 3 6

0.0075 6 6 7 3 9 8 1 1 9 2 0.075 6 7 4 0 1 2 1 0.3 1 5 1 1 0 0 6 1

0.0100 5 0 0 2 9 9 8 9 2 0.100 5 0 3 0 9 1 0.4 8 5 5 7 3 4

0.025 2 0 0 1 1 9 3 5 2 0.25 2 0 1 2 3 7 0.5 5 5 3 6 2 2

0.050 1 0 0 5 9 1 7 2 0.50 1 0 6 1 9 0.6 3 8 2 5 1 6

0.075 6 7 3 9 1 1 2 0.75 7 4 1 3 0.7 2 8 1 9 1 2

0.100 5 0 2 9 8 2 1.00 5 3 1 0 0.8 2 2 1 5 9

0.125 4 0 2 3 6 4 1.25 4 3 8 0.9 1 7 1 2 7

0.150 3 4 1 9 5 2 1.50 4 2 7 1.0 1 4 9 6

0.175 2 9 1 6 4 3 1.75 3 2 6 1.1 1 2 8 5

0.200 2 5 1 4 3 7 2.00 3 2 5 1.2 1 0 7 4

0.225 2 3 1 2 3 2 2.25 3 2 5 1.3 8 6 4

0.250 2 0 1 1 2 8 2.50 2 2 4 1.4 7 5 3

0.275 1 9 1 0 2 4 2.75 2 2 4 1.5 7 4 3

0.300 1 7 9 2 2 3.00 2 1 4 1.6 6 4 3

0.325 1 6 8 1 9 3.25 2 1 3 1.7 5 4 2

0.350 1 5 7 1 7 3.50 2 1 3 1.8 5 3 2

0.375 1 4 7 1 6 3.75 2 1 3 1.9 4 3 2

0.400 1 3 6 1 4 4.00 2 1 3 2.0 4 3 2

0.425 1 2 6 1 3 4.25 2 1 3 2.1 4 3 2

0.450 1 2 6 1 2 4.50 2 1 3 2.2 3 2 2

0.475 1 1 5 1 0 4.75 2 1 2 2.3 3 2 2

0.500 1 0 5 1 0 5.00 1 1 2 2.4 3 2 1

1 np  and p  chart rules: 2 c and u chart rules: 3 Xbar  chart rule:
   Rule 1:  n   5/min( p , ( 1 -p ))    Rule 1:  n   5/λ    n   (( k -Z r ) /δ ) 2

   Rule 2:  n   ln(.05)/ln(max( p , ( 1 -p )))    Rule 2:  n   -ln(.05)/λ

    Rule 3:  n  > k
2*max ( (1 -p ) /p , p / ( 1 -p ))     Rule 3:  n  > k

2 / λ

k  = standard deviation multiple,  p  = binomial rate,  λ  = Poisson rate,  δ = mean shift size to detect,  Z r  = standard normal value with upper tail probability

np  or p  control chart c  or u  control chart Xbar  control chart

Subgroup size
3

Subgroup Size2Subgroup Size1Defect rate 
( p )

Shift size    
( δ sigma)

Rate per    
unit (λ )

≥
≥

≥

≥

≥

Xbar Charts

The specificity of Xbar charts with any subgroup size always will be 0.9973 (using k = 3) if

the data are normally distributed.  In many healthcare applications, however, continuous data

such as times or delays can be naturally skewed, although subgroups of size n ≥ 10 usually

will produce near exact normality due to the central limit theorem.  The impact on chart per-

formance if subgroup averages are plotted therefore is minimal [31], especially as n in-

creases, another strength of Xbar charts.  Logarithmic, square root, and other transformations

also are possible, although seeking the best empirical transformation for out-of-control data

can be misleading.

An appropriate subgroup size for Xbar charts also can be determined by selecting a desired

probability, r, that the next subgroup average will fall outside the control limits if the process

mean shifts by a certain amount, δ, which yields the bound

n
k zr  ≥

−



δ

2

,

where zr is the standardized normal coordinate corresponding to an upper tail probability of r
and δ is the number of standard deviations equivalent to the magnitude of the shift in either
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direction that we want to detect.  To illustrate, for the decision-to-incision Cesarean data in

Figure 5 with a mean and standard deviation of 46 and 5 minutes, respectively, in order to

detect a shift with 0.5 probability (r = 0.5, z0.5 = 0) from the mean of 46 minutes to 49 min-

utes (δ = (49-46)/5 = 0.6 standard deviations), the subgroup size must be

n   
.

≥ −



 =3 0

0 6
25

2

.

To detect the same shift with 0.25 probability (z0.25 = .6745), the subgroup size must be

n ≥ 
3 6745

0 6
15 02

2−



 =.

.
.

= 16.

Table 3 summarizes the subgroup sizes necessary for various degrees of mean shifts in order

to achieve single-point detection probabilities of .25, .5, and .75.  These probabilities equate

to averages of 1/.25 = 4, 1/.5 = 2, and 1/.75 = 2 subgroups plotted from the time the process

changes until a value exceeds the control limits, any of which typically are considered to be

good chart performance.

Chart Sensitivity

The sensitivity of an Xbar chart with a subgroup size of n to detect other magnitudes of shifts

in the process mean can be calculated using the following formula

1− −( ) + − −( )Φ Φk n k nδ δ ,

where k and δ are defined as previously and Φ(z) is the standard normal cumulative prob-

ability evaluated at z, P(Z<z).  The operating characteristic (OC) curves in Figure 9a illustrate

the power of Xbar charts for several subgroup sizes using k = 3 and k = 2 control limits

(equating to specificities of .9973 and .9545, respectively).  The horizontal axis represents

the magnitude of the mean shift, δ, with the probability of a subgroup value falling between

the control limits plotted along the vertical axis.  The sensitivity associated with other values

of n can be approximated by interpolation.

Corresponding power curves for np, p, c, and u control charts will be different for any par-

ticular in-control rate and must be computed numerically in the binomial (p, np) case as

P LCL X UCL
n

x
p px n x

x LCL

UCL
( ) ( )

[ ]

[ ]
≤ ≤ = 





− −

= +

−

∑ 1 11

and in the Poisson (u, c) case as
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P LCL X UCL
e

x

x

x LCL

UCL
( )

![ ]

[ ]
≤ ≤ =

−

= +

−

∑
λ λ1

1  ,

where [ ]
+
 amd [ ]

-
 denote the integer round down and round up functions, respectively, and p1

and λ1 denote the values of the shifted rates.  Figure 10 illustrates the OC curves correspond-

ing to the earlier p (10a) and u (10b) control charts in Figures 6 and 7, respectively, for vari-
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Figure 9.  Operating Characteristics of Xbar Charts
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ous sample sizes, including those specified by the above rules.  Again, chart performance

for other values of n can be approximated by interpolation.  Note in each case that the OC

curves exhibit power to detect rate decreases only when the sample size equals or exceeds

that specified by rule 3.  All other OC curves, plotted in solid lines, converge to 1.0 as the

shifted rate converges to 0.  As would be expected, the specificity for values of n lower than

indicated by rules 1 and 2 also is less than when these rules are satisfied.
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Figure 10.  Operating Characteristics of p and u Charts
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Figure 11.  Detection Probability of Runs-Beneath-CL Rule of p and u Charts with LCL = 0

The sensitivity of all chart types can be improved using the supplementary "between-limit"

rules mentioned previously, although at the expense of reduced specificity [32].  These rules

also will add power to detect rate decreases for np, p, c, and u control charts with lower con-

trol limits of zero.  For example, one of the most commonly used rules is "8 consecutive val-

ues on the same side of the center line".  Figure 11 illustrates the probability using this rule

that a sequence of 8 consecutive subgroups will not generate an out-of-control signal for the

earlier p (11a) and u (11b) charts in Figures 6 and 7.  Note that small subgroup sizes with
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LCL = 0 now yield power to detect rate decreases.  Similarly, Figure 9b illustrates the corre-

sponding Xbar chart in-control probabilities for this and a second commonly used rule, if

used independently of one another.  In general, the more rules that are used together, the

greater the improvement in sensitivity but also the greater the frequency of false alarms.

Other Types of Control Charts

Control Charts for Low Rates & Infrequent Data

As shown in Table 3, when dealing with rare events standard control charts can become

problematic in terms of the amount of data and time required until a subgroup value can be

plotted.  This can result in feedback becoming available too infrequently to be able to make

rational process decisions in a timely manner.  In such cases, a simple alternative to plotting

the number of occurrences per time period on a p or u chart instead is to use a g-type of con-

trol chart for the number of cases or the amount of time between occurrences.  These charts

are simple to use, when dealing with rare events have better statistical properties for detect-

ing rate increases (using probability limits) or decreases than conventional charts, and are

particularly useful for verifying improvements [33-35].

Figure 12 illustrates a recent g control chart for the number of procedures between prevent-

able complications.  Note that for this type of chart, higher rather than lower values equate to

process improvements and longer times between adverse events.  The formulae, statistical

performance, and subgroup size considerations for these charts recently were discussed in

detail by Benneyan [33, 36].  Other examples of this type of chart include the number of sur-

geries between surgical site infections, the number of patients between catheter-associated

infections, the number of days between adverse drug events, the number of days between

needle sticks, and so on.
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Figure 12.  Example of g Control Chart of Number of Procedures
Between Preventable Complications
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Non-Shewart Control Charts

Although beyond the scope of this article, several other types of control charts also exist, in-

cluding moving average (MA), exponentially weighted moving average (EWMA), cumulative

sum (Cusum), and cumulative score (Cuscore) charts.  While more complicated to use, each of

these types of charts tend to have certain advantages over the simpler Shewhart type of charts,

such as being more powerful for detecting or verifying smaller process changes, being more

appropriate for seasonal or auto-correlated data, or integrating monitoring with feedback ad-

justment (such as for managing the blood glucose of a diabetic patient).  Figure 13 illustrates

an EWMA control chart (using a smoothing weight of 0.2) for the same complication data as

shown above, with the small rate decreases around samples 20 and 36 now being much more

visually evident than in Figure 12.  This type of chart is one of a few methods also often used

to appropriately deal with autocorrelated or seasonally cyclic processes [37-39].
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EWMA: Exponentially weighted moving average

Figure 13.  Example of EWMA Control Chart of Procedures Between Complications

Discussion

As organizations begin to use control charts with greater frequency, several implications on

process management and the use of data begin to emerge.  Achieving consistent levels of pa-

tient care is especially critical in clinical situations where a lack of statistical control can have

direct consequences on risk management and liability.  For many organizations this effort

may mean transitioning from traditional orientations largely focused on external reporting

and regulatory adherence to orientations more focused on continual process analysis and re-

design.  This effort also will require a focus as much on processes as on outcomes, and there-

fore different data elements in different formats may be necessary.

In many applications, instead of current practices of reporting data in large infrequent sam-

ples (such as quarterly), data should be collected in smaller samples much more frequently
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(such as weekly or monthly) and plotted on an appropriate control chart.  Much of the aggre-

gate data currently collected for various "report cards" should be plotted and evaluated for

process stability on control charts in more frequent and smaller samples.  The meaning and

interpretation of standards and benchmarks also now is much less clear, such as a standard

Cesarean delivery rate of 15%.  Should an organization’s monthly rate never exceed 15%, it’s

long-term center line of a p control chart equal 15%, the upper control limit be less than 15%,

or something else?

One reasonable answer is that a process must be in-control (otherwise, of course, there is no

true rate to even consider) and that the center line should equal the standard rate, in this ex-

ample 0.15.  This would mean that the long-term rate (i.e., the center line) is equal to the

standard, although of course approximately half of the plotted subgroup values will fall

above the centerline.  (This type of control chart, although less commonly used, actually is

called a "standards given" control chart [22-24].)  When dealing with low rates, it also can be

advantageous to collect data on the number of cases or the amount of time between adverse

events, rather than monthly rates.  Perhaps more generally, it becomes clear that the purpose

of data largely is to understand and improve process performance, rather than to evaluate,

reward, or punish individual performance.

As important as it is to use SPC, it is equally important to use it correctly [40-41].  Use of

incorrect charts or formulae in the past has resulted in a failure to detect infection rate in-

creases and changes in clinical laboratory equipment, obvious liability concerns.  Other

common errors include using insufficient amounts of data when estimating control limits,

misuse of "short-cut" formulas and empirical transformations, over-use and inappropriate use

of "individuals" charts such as for discrete or non-normal data, and using standard charts

when combining data from non-homogeneous processes [25].  In some situations, it also is

important to properly adjust for seasonality, case mix, severity, age, gender, and so on.  Al-

though beyond the scope of the present article, regression, logistic regression, and risk-

adjusted SPC methods also have been proposed for such scenarios (although further mathe-

matical development and research is needed in this area) [7].

More generally, organizations sometimes get swept up in creating control charts simply for

the sake of creating charts, including widespread software-generated charts of almost all

available data, without much planning and follow-through on how the resultant information

will be used.  Using SPC requires time and effort, and there is little point in investing these

resources unless results will be used to inform and improve.  Better success tends to result

from focusing on a few key concerns and then expanding one’s use of SPC based on these

experiences and the knowledge gained.
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