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T
HERE ARE many uses of control charts in health-
care and public-health surveillance. Some of the

work in this area was developed independently of the
development of industrial statistical process control
(SPC) methods. Thus, there is the opportunity for a
transfer of knowledge between these two application
areas.

Standard control charts are often recommended
for use in the monitoring and improvement of hospi-
tal performance. For example, one might monitor in-
fection rates, rates of patient falls, or waiting times of
various sorts. See, for example, Benneyan (1998a,b),
Lee and McGreevey (2002a), or Benneyan et al.
(2003). There are several books on this topic, includ-
ing Carey (2003), reviewed by Woodall (2004), Hart
and Hart (2002), and Morton (2005). The more stan-
dard uses of control charts in hospital applications
are not reviewed here even though improvements are
widely needed, as discussed by Millenson (1999), the
Institute of Medicine (2000), and others. We also do
not discuss the monitoring of health-related variables
for individual patients, as recommended, for exam-
ple, by Alemi and Neuhauser (2004).
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Thacker et al. (1995) discussed the differences be-
tween monitoring chronic diseases and infectious dis-
eases. We will not discuss methods for the surveil-
lance of infectious diseases. These methods often in-
volve the use of time series models to account for sea-
sonal effects. For information on this topic, the reader
is referred to Hutwagner et al. (1997), O’Brien and
Christie (1997), Farrington and Beale (1998), Far-
rington et al. (1996), Williamson and Hudson (1999),
and VanBrackle and Williamson (1999).

Some general differences between the health-
related control chart applications and industrial ap-
plications are given in the next section. Then it
is described how the performance of control charts
is sometimes evaluated differently in the health-
related literature. There are sections on various types
of methods proposed for health-related monitor-
ing, along with their advantages and disadvantages.
Methods for the prospective detection of clusters of
disease are briefly reviewed, followed by a section
on comparisons of institutional performance. Finally,
the conclusions are given.

Some General Issues

The use of control charts in health-related applica-
tions differs somewhat from industrial practice. Some
of these differences are highlighted in this section.
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For instance, the use of attribute data is much
more prevalent in health-care applications than in
industrial practice. Also, there is much greater use
of charts based on counts or time between failures
with an assumed underlying geometric or exponen-
tial model. There has been a considerable amount
of research in the industrial SPC literature on con-
trol charts for monitoring the parameter of a geomet-
ric distribution. These charts are useful in high-yield
industrial processes with infrequent nonconforming
items. Woodall (1997) provided a list of papers on
this topic with some more recent work done by Yang
et al. (2002), Xie et al. (2002), and others. The geo-
metric chart methods are yet to be included in popu-
lar textbooks, such as Montgomery (2005), however,
or in software such as MINITAB.

In many health-care applications, it is essential to
risk adjust the outcome data before constructing a
control chart. For example, health-related variables
are often used in a logistic regression model to pre-
dict the probabilities of mortality for patients. It is
not reasonable, for example, to assume that cardiac-
surgery patients of widely differing ages and health
conditions have the same probability of short-term
survival. The risk-adjusted probability estimates are
used in the construction of control charts, as opposed
to assuming that there is a constant in-control prob-
ability of failure, as is typical under the relatively
well-controlled conditions of industrial applications.
Risk-adjusted methods are discussed in a later sec-
tion.

Many researchers have studied the monitoring of
rates over time in a medical context. These could
be mortality rates, rates of disease, or rates of con-
genital malformations. In the latter case, a common
assumption corresponds to 100% inspection, where
required information is obtained on each birth as it
occurs within a given geographical area of interest.
In general, there is much less emphasis on sampling
only a portion of the output of a process at peri-
odic intervals than in the industrial SPC literature.
Thus, much of the work on sampling-based meth-
ods in industrial SPC is not readily applicable in the
public-health arena.

In contrast with industrial practice, in public-
health applications, it is not possible to adjust a
process to try to return it quickly to in-control per-
formance. In many public-health applications a con-
trol chart might continue to provide alarms after its
first alarm. Kenett and Pollak (1983) and Chen et al.
(1993) provided methods that account for this phe-

nomenon, although the expected time until the first
signal is still of primary concern.

Performance Evaluation Issues

There have been some new criteria proposed for
the evaluation of health-related control charts. These
criteria are discussed in this section. In addition,
some of the differences between the evaluation and
justification of methods in the health-related litera-
ture and the industrial-related literature are summa-
rized.

In industrial quality control, it has been beneficial
to carefully distinguish between the Phase I analysis
of historical data and the Phase II monitoring stage.
With Phase I data, one is interested in checking for
stability of the process and in estimating in-control
parameter values for constructing Phase II methods.
See, for example, Woodall (2000). Phase I methods
are usually evaluated by the overall probability of a
signal, whereas run-length performance is typically
used for comparison purposes in Phase II, where the
run length is the number of samples before a signal
is given by the control chart. Steiner et al. (2000)
used Phase I data to establish baseline performance
for Phase II, but, in general, there is often not a clear
distinction between the two phases in health-related
control charting.

Sonesson and Bock (2003) provided an excellent
review paper on prospective statistical surveillance in
public health. They pointed out some of the problems
and issues related to the statistical evaluation of the
proposed methods. There is, for example, very little
use of steady-state run-length performance of pro-
posed Phase II methods in the public-health surveil-
lance literature. In general, the researchers have not
examined the average run length (ARL) performance
of competing methods over a range of process shift
sizes, as is standard in the industrial SPC litera-
ture. Typically, the ARL performance of a proposed
method is evaluated for the in-control state and for
the single shift in the process for which the proposed
method is optimized to detect quickly. Quite often,
the only method of evaluation is through the analysis
of a single case study.

In most cases, the run length corresponds exactly
to the number of points plotted on the chart. With
100% attribute sampling, however, a point is often
plotted on a chart only when a defective item is
found. Thus, as explained in detail by Reynolds and
Stoumbos (1999), it is then useful to consider as well

Journal of Quality Technology Vol. 38, No. 2, April 2006



USE OF CONTROL CHARTS IN HEALTH-CARE MONITORING AND PUBLIC-HEALTH SURVEILLANCE 91

the number of observations to signal and the average
number of observations to signal (ANOS). Another
useful variable is the time to signal, with interest of-
ten in the average time to signal (ATS). The ATS
is useful when the time between the samples or be-
tween the points plotted on the control chart varies,
as it would, for example, with exponential data. This
distinction between measures is not made as clearly
in the health-related control charting literature.

Sonesson and Bock (2003) preferred the use of the
probability of a false alarm over the use of the in-
control ARL to measure in-control performance of a
control chart. This would require one to specify the
probability distribution of the time until the shift in
the process or the time, or the number of inspections,
for which the false alarm probability would apply.

Frisén (1992) proposed the predictive value of an
alarm for deciding if an alarm is a false alarm or
not based solely on the time of the alarm. A very
similar development was given independently in the
industrial SPC literature by Moskowitz et al. (1994).
Sonesson and Bock (2003) also discussed the idea. To
apply these methods, one must specify the size of the
shift that will occur and the distribution of the time
of the shift. Such strong assumptions are commonly
required in the economic design of control charts.

Aylin et al. (2003) pointed out that health-care
surveillance methods have not dealt effectively with
the monitoring of multiple units (e.g., hospitals or
physicians) or with the overdispersion of health-care
data. The simultaneous use of a large number of con-
trol charts also occurs in industry. There appears to
be no solution to this problem beyond increasing the
width of the control limits to decrease the expected
number of false alarms. An approach of Aylin et al.
(2003) requires one to specify the expected number
of processes initially out of control. They further as-
sumed that all out-of-control processes are shifted by
the same amount. Under these conditions, they eval-
uated over time the proportion of all alarms that are
false, the false detection rate (FDR), and the pro-
portion that are not, the successful detection rate
(SDR). Although these concepts seem appealing, the
assumptions are quite restrictive. One often expects
delayed shifts of varying magnitudes.

Overdispersion results when the variance of the
response exceeds what would be expected under a
specified model, e.g., the Poisson model. It can cause
a significant increase in the number of false alarms.
Overdispersion of attribute data has been consid-

ered in the SPC literature, with Woodall (1997) pro-
viding a list of papers on this topic. Recent work
was reported by Fang (2003) and Christensen et al.
(2003). Hawkins and Olwell (1998, p. 120) recom-
mended replacing the Poisson model in some cases
by a negative binomial model when overdispersion
occurs. Still, many issues on how to best adjust con-
trol charts for overdispersion remain unresolved.

CUSUM and EWMA Methods

Cumulative sum (CUSUM) methods are widely
used in health-care monitoring and in public health
surveillance. In contrast with industrial SPC, the ex-
ponentially weighted moving average (EWMA) chart
is very rarely discussed or used, although Morton et
al. (2001) provide an exception. Lucas and Saccucci
(1990) discussed the EWMA control chart. Within
the industrial SPC literature, CUSUM charts are
more frequently proposed to monitor attribute data
than are EWMA charts.

The distinction between Phase I applications of
CUSUM methods and Phase II applications is fre-
quently blurred in the health-related monitoring lit-
erature. CUSUM charts have advantages in Phase
II performance for detecting sustained shifts in per-
formance, but change-point methods generally have
much better detection capability in Phase I.

Most of the CUSUM charts of the Page (1954)
type applied in the health-related SPC literature are
Poisson-based CUSUM charts for count data. The
Poisson CUSUM charts were discussed by Ewan and
Kemp (1960) and studied in detail by Lucas (1985).
In some cases, Bernoulli-type data, such as that cor-
responding to births, are grouped arbitrarily based
on time intervals to form the approximately Pois-
son random variables. In these cases, it would have
been more efficient to use a geometric or Bernoulli-
based CUSUM chart, as shown by Bourke (1991) and
Reynolds and Stoumbos (1999), respectively. In an
early review paper, Barbujani (1987) gave two disad-
vantages of the CUSUM method (a constant birth-
rate assumption and inherent delay due to grouping),
but these disadvantages apply only to the Poisson
CUSUM chart, not to the geometric or the equiva-
lent Bernoulli CUSUM method.

In mortality-rate monitoring, it is often necessary
to allow varying in-control parameter values. For ex-
ample, the observed number of deaths in a popula-
tion of interest could be modeled using a Poisson ran-
dom variable with the in-control mean determined
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using an accepted mortality table and characteris-
tics (such as age and gender) of the individuals in the
population. One must allow, however, for changes in
the ages and the composition of the population over
time. Rossi et al. (1999) proposed a way of overcom-
ing the constant in-control parameter assumption for
the usual Poisson CUSUM by basing the CUSUM on
standardized counts, subtracting from each count the
in-control mean and dividing by the in-control stan-
dard deviation. Their approach seems better than
the weighted Poisson CUSUM method of Hawkins
and Olwell (1998, pp. 120–121), which accounts for
the changing value of the in-control parameter by us-
ing a specified fraction of it as the CUSUM reference
value, but no performance comparisons of these two
methods have been made.

Vardeman and Ray (1985) evaluated the perfor-
mance of the CUSUM chart when exponential ran-
dom variables are observed. Gan (1994) and Gan and
Choi (1994) considered the design and properties of
such charts. These CUSUM charts could be used as
approximate methods in the monitoring of rates of
congenital malformations under the assumption of
a constant birthrate. Montgomery (2005, pp. 304–
306) recommended plotting exponential data on an
individuals control chart after using a power trans-
formation recommended by Nelson (1994). EWMA
charts for exponential data have been studied by Gan
(1998). An EWMA chart for Poisson data was stud-
ied by Borror et al. (1998).

The CUSUM charts in health care are typically
one sided, with the part corresponding to process
improvement or a decrease in a disease or mortal-
ity rate not included. As an historical detail, Grigg,
Farewell, and Spiegelhalter (2003) and Grigg and
Farewell (2004) credited Khan (1984), instead of
Kemp (1961), with the formula for the ARL of a
two-sided CUSUM chart based on the ARLs of the
two one-sided component charts. In addition, Mar-
shall et al. (2004) and Aylin et al. (2003, Appendix)
stated that the log-likelihood CUSUM chart statistic
of Page (1954) gives equal weight to past and present
data. As explained by Hunter (1990) and Woodall
and Maragah (1990), this is not true once the deci-
sion rule is taken into account. The CUSUM chart
gives equal weight to a random number of the most
recent data values.

CUSUM charts have also been proposed for the
monitoring of adverse reactions to drug treatments
(Praus et al., 1993), to assess trainee competence
(Bolsin and Colson, 2000), and in the detection of

bioterrorism (see http://www.bt.cdc.gov/surveillance
/ears/; Hutwagner, Thompson, Seeman and Tread-
well 2003, 2005; and Hutwagner, Browne, Seeman
and Fleischauer, 2005).

Resetting Sequential Probability
Ratio Test (RSPRT)

Morton and Lindsten (1976) proposed the use of
repeated (or resetting) sequential probability ratio
tests (RSPRTs) to detect an increase in the rate of
Down’s syndrome. Counts obtained over time were
assumed to be based on an underlying Poisson dis-
tribution, where the in-control value of the Poisson
parameter could vary over time. They preferred this
method to the CUSUM chart for Poisson data in part
because the CUSUM chart at the time could not al-
low for the varying in-control parameter values. They
held that the SPRT Type I and Type II error prob-
abilities (i.e., α and β) were easier to interpret than
ARLs.

The use of the RSPRT is discussed in this section.
It is argued that the use of error probabilities with
this method is inappropriate and that the use of the
standard CUSUM chart is a better choice.

The SPRT of Wald (1947) is a sequential test of
hypotheses for which sampling stops as soon as a
test statistic, often assumed based on independent
and identically distributed observations, crosses ei-
ther an upper rejection boundary or a lower accep-
tance boundary. The SPRT is inappropriate for mon-
itoring purposes because process changes can be de-
layed. The repeated use of the SPRT, with bound-
aries obtained using Wald’s approximations, how-
ever, has been recommended in the health-care SPC
literature. Although appealing to practitioners famil-
iar with hypothesis testing, error probabilities are
not interpretable with repeated use of the sequential
tests, as recently pointed out by Grigg et al. (2003)
and Spiegelhalter (2004). With repeated testing, the
probability of eventually rejecting a true null hypoth-
esis, resulting in a false alarm, is one. In addition,
any sustained shift in the process will be detected;
the issue is how long detection will take. Rogers
et al. (2003) stated that the error probabilities are
needed to obtain the ARL performance of CUSUM
charts, but this is not the case. Grunkemeier et al.
(2003) also used error probabilities in the design of a
CUSUM chart. I strongly encourage the use of run-
length performance measures such as ARL, ANOS,
and ATS, not error probabilities, to construct and to
evaluate the performance of control charts in Phase
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FIGURE 1. Sequential Probability Ratio Test (SPRT) for Detection of a Doubling in Mortality Risk: Age >64 Years and

Death in Home/Practice for Dr. Harold Shipman. (Figure 2(B) of Spiegelhalter et al. (2003)). Reproduced by permission of

the Oxford University Press.

II. Closely related discussion was given by Adams et
al. (1992).

Figure 1 shows a single SPRT applied by Spiegel-
halter et al. (2003) to data from the practice of
Dr. Harold Shipman, who was convicted in 2000 of
murdering 15 of his patients and implicated in the
killing of between 200 and 300 others. Most of his

victims were females over age 65. This SPRT was de-
signed to test the null hypothesis of standard perfor-
mance against a doubling of the odds of death com-
pared to local doctors. Figure 2 shows the RSPRT
where the comparison is with doctors in England and
Wales. Both figures show more older female deaths
than would be expected under standard performance.
For more information on the Shipman case, read-

FIGURE 2. Sequential Probability Ratio Test for Detection of a Doubling in Mortality Risk Allowing for Restarts: Age >64

Years. α, False-Positive Error Rate; β, False-Negative Error Rate. (Figure 3(C) of Spiegelhalter et al. (2003)). Reproduced

by permission of the Oxford University Press.
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ers are referred to a report from the official inquiry
at http://www.the-shipman-inquiry.org.uk/reports.
asp.

The usual one-sided CUSUM chart can be viewed
as a resetting SPRT with a lower acceptance bound-
ary of zero. The RSPRT as typically used in the
health-care applications has a relative disadvantage
in that its statistic can be below zero when an in-
crease in the rate being monitored occurs. In the
health-care literature, authors use the term “credit”
to refer to this problem, whereas in industrial SPC,
the term “inertia” is used. The undesirable build-
ing up of credit by the RSPRT chart was discussed
by Aylin et al. (2003), Grigg et al. (2003), Spiegel-
halter et al. (2003), Rogers et al. (2004), Marshall et
al. (2004), and Grigg and Farewell (2004a). Yashchin
(1993) discussed inertia and Woodall and Mahmoud
(2005) gave a review of the industrial SPC literature
on inertia. For charts designed to detect a change
in the mean of a normally distributed process dis-
tribution, Woodall and Mahmoud (2005) defined the
signal resistance of a chart to be the largest stan-
dardized sample mean not necessarily leading to an
immediate out-of-control signal. Another definition
of signal resistance is needed for the charts for moni-
toring the parameters of the geometric and exponen-
tial distributions that arise in public-health surveil-
lance. In these cases, the increase in the CUSUM
statistic at any time period is bounded. Thus, it is
more meaningful to define signal resistance in terms
of the maximum number of consecutive observations
for which it is not possible to have an out-of-control
signal.

The control charts based on repeated use of the
SPRT proposed by Reynolds and Stoumbos (1998,
2000a, 2000b, 2001) for monitoring a proportion can
be applied under 100% inspection. Their ANOS com-
parisons apply to the 100% inspection case. Stoum-
bos and Reynolds (1996, 1997, 2001) and Reynolds
and Stoumbos (2000a, 2000b, 2001) showed, however,
that when optimally designed for statistical perfor-
mance, the RSPRTs have an acceptance boundary
much closer to zero than that obtained with the stan-
dard use of Wald’s approximations. In some cases,
the best lower acceptance boundary can even be
positive. The statistical performance of these charts
is much closer to that of the one-sided CUSUM
chart, but in the case of a positive lower limit, the
charts will have better inertial properties. In general,
Reynolds and Stoumbos showed that the repeated
use of the SPRT in control charting is very useful

in reducing sampling costs when variable sampling
rates are allowed. With 100% inspection, the bene-
fits of the more general RSPRT over the standard
one-sided CUSUM, a RSPRT itself with a reflecting
boundary at zero, are not substantial.

Sets Method and Its Modifications

Chen (1978) proposed what has become known
as the sets method for detecting an increase in the
rate of a rare event, such as the occurrence of con-
genital malformations. The use of the sets method is
reviewed in this section along with some of its mod-
ifications.

An underlying assumption is that the outcomes of
all births are obtained with 100% inspection in time
order. The counts of births between successive mal-
formations of a given type are made. If the counts
of births between n successive malformations are all
less than a specified constant, say k, then an increase
in the rate is signaled by the sets method. Many au-
thors have studied the sets method and made various
modifications. See Arnkelsdóttir (1995), Barbujani
and Calzolari (1984), Chen (1985, 1986, 1987, 1991),
Gallus et al. (1986), Kenett and Pollack (1983), Sitter
et al. (1990), and Wolter (1987). A related method
based on a scan statistic was proposed by Ismail et
al. (2003).

Wolter (1987) and Radaelli (1992) proposed
Cuscore-type methods. In these methods, a variable
is defined to be 1 if the number of births between
successive malformations is below a threshold and
−1 otherwise. These variables are then used in a cu-
mulative sum chart.

Lie et al. (1991) provided a review of the sets
method and other competing approaches. Sego et al.
(2005) also reviewed this topic with the various com-
parisons of statistical performance considered in de-
tail. They provided comparisons of the sets method
to the Bernoulli CUSUM chart because previous per-
formance comparisons were primarily limited to the
less effective Poisson CUSUM chart.

Sego et al. (2005) noted that the sets method of
Chen (1978) is a special case of the runs rules ap-
proach of Page (1955). Champ and Woodall (1987)
showed that, for a wide range of runs rule combina-
tions, the effect of runs rules was to increase the sen-
sitivity of the Shewhart chart to small and moderate-
sized shifts in the mean of a normal distribution, but
the sensitivity of the CUSUM chart to such shifts was
better. Sego et al. (2005) showed that an optimally
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designed Bernoulli CUSUM chart has better perfor-
mance than the sets-based methods. The sets meth-
ods do not use all of the information in the data and
the performance of CUSUM charts has optimality
properties as discussed by Moustakides (1986) and
Hawkins and Olwell (1998, pp. 138–139).

The method of Sitter et al. (1990) signals when
two signals by the sets method are separated by fewer
than a specified number of instances of the noncon-
formity of interest. Sego et al. (2005) showed that
the ARL analysis of the performance of this modifi-
cation of the sets method did not take into account
the effect of an implicit headstart feature. See Lucas
and Crosier (1982). A steady-state run length anal-
ysis showed that this method was not better than
the sets method in detecting delayed shifts in the
process. Sego et al. (2005) pointed out that the sets
method itself has a slight headstart feature that ne-
cessitates steady-state run-length performance com-
parisons rather than zero-state comparisons.

Risk-Adjusted Charts

Grigg et al. (2003) and Grigg and Farewell (2004a)
gave excellent reviews of the development of risk-
adjusted control charts. For the construction of these
attribute charts, the in-control probability of a death,
for example, can vary from person to person accord-
ing to an assumed model. Some of these methods are
reviewed in this section.

Lovegrove et al. (1997, 1999) and Poloniecki et
al. (1998) independently proposed cumulative plots
for the expected mortality counts minus the observed
counts (often written as “net lives saved”) that could
be applied, for example, to physicians or hospitals.
A positive trend could indicate better than average
performance. These variable life-adjusted displays
(VLAD charts) or cumulative risk-adjusted mortal-
ity charts (CRAM charts) incorporated no meaning-
ful control or decision limits, however. Poloniecki et
al. (1998), for example, presented control limits that
were calculated at a nominal level of significance by
testing whether or not the mortality rate of the most
recent group of patients where one would expect 16
deaths is different than that in all the previous cases.
This resulted in repeated hypothesis testing using a
χ2 statistic with one degree of freedom, but the au-
thors stated that this did not amount to a formal
test of significance because the calculations were per-
formed after every operation and no allowance was
made for the number of tests. In other words, the
Type I error probability for the tests is not directly

interpretable in terms of the run-length performance
of the procedure. Also see Gallivan et al. (1998). Sis-
manidis et al. (2003) evaluated the performance of
these methods, but with no comparisons to compet-
ing methods.

An example of a CRAM chart from Poloniecki
et al. (1998) is shown in Figure 3. This figure
shows better-than-expected overall performance for
the hospital being monitored because there is an in-
creasing trend. The lower control limit was crossed at
operation 1651 and at operation 2189, demonstrating
deteriorations of performance relative to prior perfor-
mance.

A number of types of control charts have been
modified to adjust for risk. Steiner et al. (1999, 2000)
provided risk-adjusted CUSUM charts based on the
approach of Page (1954). The CUSUM chart is based
on likelihood ratios and these ratios are affected by
the varying in-control probabilities of mortality for
patients. A risk-adjusted RSPRT chart was proposed
by Spiegelhalter et al. (2003) and a risk-adjusted
sets method by Grigg and Farewell (2004). Risk-
adjusted methods were discussed by de Leval et al.
(1994), Alemi et al. (1996), Gustafson (2000), Ben-
neyan and Borgman (2003), Cook et al. (2003), Web-
ster et al. (2004), Spiegelhalter et al. (2004), and
Beiles and Morton (2004). An example of a risk-
adjusted CUSUM chart is shown in Figure 4. The
upper CUSUM is designed to detect worsening per-
formance, whereas the lower CUSUM is designed
to detect improvements in performance. The lower
CUSUM showed an improvement in performance and
was then reset.

The paper by Lie et al. (1993) was not included
in the review by Grigg and Farewell (2004a). Lie
et al. (1993) appear to be the first to risk adjust a
control chart using logistic regression. In particular,
they used logistic regression to adjust the risk for
Down’s syndrome based on the age of the mother.
They used a Markov chain to study the ARL prop-
erties of a risk-adjusted CUSUM chart, as later done
by Steiner et al. (2000). Lie et al. (1993) was over-
looked by Woodall (1997), who stated that logistic
regression could be used in the design of attribute
control charts, but was unaware of any applications.

Risk adjustment with attribute charts using lo-
gistic regression is quite similar to regression adjust-
ment of variables charts as discussed, for example, by
Hawkins (1991, 1993) and Wade and Woodall (1993).
With regression-adjusted control charts, one can use
simple linear regression or multiple regression to ac-

Vol. 38, No. 2, April 2006 www.asq.org



96 WILLIAM H. WOODALL

FIGURE 3. Cumulative Risk Adjusted Mortality (CRAM) Chart with 99% Control Limits for Change in Mortality in Last

16 Expected Deaths. (From Poloniecki et al. (1998). Reproduced with permission from the BMJ Publishing Group.).

count for variation in the quality of items as they
enter the process being monitored. Risk adjustment
plays a much more fundamental role in the higher
variation context of health care, however, than re-
gression adjustment has played to date in industrial
applications.

Obtaining the run-length properties of risk-
adjusted charts is more difficult than in the non–risk-
adjusted case because the properties of the charts
also depend on the risk factors of the population
of patients. Also, the adequacy and accuracy of the
risk-adjustment methods affect the performance of
the resulting chart. Thus, the adequacy of the risk-
adjustment model should be monitored over time.
With the exception of Steiner et al. (2000), little
work has been done on the effect of estimation error
and model inadequacy on the performance of risk-
adjusted charts.

How to select a model for risk adjustment is an
important statistical issue. For cardiac surgery, the
models are often based on the Parsonnet score (see
Steiner et al. 2000) or the euroSCORE (see Albert
et al. 2004). These scores are based on character-
istics of the patient, such as age and gender, and
health-related variables, such as diabetic status or re-
nal function. For more information and perspectives
on risk adjustment, the reader is referred to Iezzoni
(1997) and Lilford et al. (2004).

Prospective Detection of
Clusters of Disease

The work discussed in previous sections implicitly
dealt with a single region. As discussed by Lawson
(2001, Chapter 9), it is often desirable to incorporate
spatial information into a monitoring procedure to
detect clusters of chronic disease as they are form-

FIGURE 4. Example of a Two-Sided Risk-Adjusted CUSUM Chart (provided by Stefan H. Steiner).
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ing. There is a vast literature on the identification
of clusters of disease, but virtually all of it is for
retrospective analysis, not prospective surveillance.
Some of the prospective methods are discussed in
this section.

There does not appear to be any work in the in-
dustrial SPC literature on the prospective problem of
detecting clusters of errors or defects. The approach
of Friedman (1993) provided a method for adjusting
the Poisson-based c-chart when there were clusters of
defects due to spatial correlation, but there was no
method for detecting clusters as they are forming.

In the public-health situation, one could have, for
instance, disease-count data available at regular in-
tervals for each of several contiguous regions. Thus,
the count data are aggregated by location and by
time. The detection of clusters of disease under this
situation was discussed by Raubertas (1989), Le-
ung et al. (1999), and Rogerson and Yamada (2004).
Rogerson and Yamada (2004) applied their method
to the detection of clusters of breast cancer. Rauber-
tas (1989) advised applying a battery of univariate
one-sided CUSUM charts with charts for each region
and other charts based on combining the data from
neighboring regions. Rogerson and Yamada (2004)
compared the performance of the joint use of one-
sided CUSUM charts, as proposed by Woodall and
Ncube (1985), to the use of the multivariate CUSUM
method MC1 proposed by Pignatiello and Runger
(1991). As discussed in detail by Joner et al. (2005),
the choice of MC1 is not appropriate in this appli-
cation because it is directionally invariant under the
assumption of multivariate normality and will detect
decreases as well as increases in disease rates. In ad-
dition, Runger and Testik (2004) and Woodall and
Mahmoud (2005) showed that MC1 has serious prob-
lems with inertia and can be ineffective in detect-
ing delayed shifts in the mean vector of a process.
Joner et al. (2005) proposed a one-sided multivariate
EWMA chart for use in this situation and compared
it with MC1 and other approaches for modifying the
MEWMA chart of Lowry et al. (1992) that were sug-
gested by Fasso (1998, 1999).

The CUSUM method of Rogerson (1997), based
on a statistic due to Tango (1995), could be used if
there are multiple regions and the instances of disease
are observed individually and sequentially, i.e., when
the data are aggregated by location, but not time.
The statistical performance of this method has not
been evaluated.

Rogerson (2001) proposed a CUSUM chart based

on a Knox (1964) statistic for use in the case for
which instances are not aggregated at all, but are
observed individually and sequentially with the ex-
act location within a specified region also provided.
The performance of this method was studied by Mar-
shall et al. (2005), who showed that the in-control
statistical performance of this method requires sim-
ulation because normal distribution approximations
are inadequate.

Related work was given by Järpe (1999), who pro-
posed a method based on the Ising model, and Kull-
dorff (2001), who proposed a method based on a
space–time scan statistic.

As Lawson (2001, p. 204) argued, there is a need
for much more research on the prospective detection
of clusters. The performance of the proposed meth-
ods has not been carefully studied and there are no
performance comparisons between methods. In addi-
tion, it is not clear in some cases how large a baseline
sample would be needed in Phase I before starting
the Phase II monitoring. One also must use methods
that account for varying population densities. Be-
cause one could consider the disease rate as a surface
over the geographic region of interest, the ideas of
quality profile monitoring might apply, an area de-
scribed by Woodall et al. (2004).

League Tables, Comparison Charts,
and Funnel Charts

The general issues in comparing institutional per-
formance are beyond the scope of this paper, but
some of the graphical methods are described in this
section.

In the comparisons of mortality rates (possibly
risk-adjusted) of a number of different hospitals or
physicians, it is common to present the data in a
league table, where the items are ranked from best
to worst. The league table is sometimes referred
to as a comparison chart. An example of a league
chart is given in Figure 5. The league tables have
been criticized by Adab et al. (2002) and others, in
part because the statistical significance of the rank-
ing of units is not addressed. With league tables
and the comparison charts, as described by Lee and
McGreevey (2002b), a confidence interval is given
for each unit that demonstrates a difference from
the average score only if the average score is not
within the corresponding interval. In Figure 5, Hospi-
tal #32 is considered to be significantly better-than-
average in performance and hospitals #19, 20, 24,
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FIGURE 5. Example of a League Table from Adab et al. (2002). Reproduced with permission from the BMJ Publishing

Group.

and 35 are considered to have worse-than-average
performance.

Adab et al. (2002) and Mohammed et al. (2001)
recommended a control chart-type approach where
constant control limits are given. This is a useful ap-
proach, but it is not a standard control chart situa-
tion, however, because the data are not in time order.
The use of the term “control chart” seems inappro-
priate. This chart is illustrated in Figure 6, where
hospital #32 has better-than-average performance
and hospitals #19 and 35 have worse-than-average
performance.

The funnel plot was proposed by Spiegelhalter
(2002) and the equivalent mortality control chart by
Tekkis et al. (2003). The funnel chart has the num-
ber of patients for each hospital or physician on the
horizontal axis and the rate of interest on the ver-
tical axis. Decision lines are based on a multiple of
the standard error about the overall average rate.
These limits decrease in width as the number of pa-
tients increases, forming the funnel shape. Thus, the
statistical significance of the difference from the av-
erage is evaluated similarly to the comparison chart
and league table, but the units are not ranked from
best to worst or listed alphabetically, as is usually

FIGURE 6. Example of Proposed Control Chart by Adab et al. (2002). Reproduced with permission from the BMJ Publishing

Group.

Journal of Quality Technology Vol. 38, No. 2, April 2006



USE OF CONTROL CHARTS IN HEALTH-CARE MONITORING AND PUBLIC-HEALTH SURVEILLANCE 99

FIGURE 7. “Funnel plot” of Emergency Readmission Rates Following Treatment for a Stroke in Large Acute or Multiservice

Hospitals in England and Wales in 2000–2001. Exact 95% and 99.9% Binomial Limits are Used. (From Spiegelhalter (2002).

Reproduced with permission from the BMJ Publishing Group.).

the case with the comparison chart. An example of
a funnel chart from Spiegelhalter (2002) is shown in
Figure 7, where two hospitals show relatively poor
performance.

Industrial practitioners might recognize the need
for an analysis of means approach in this type of ap-
plication. See, for example, Rao (2005). There is no
such method yet developed, however, for comparing
proportions based on unequal sample sizes that con-
trols the overall probability of a Type I error.

Conclusions

For those interested in more information on
prospective surveillance in public health and health-
care monitoring, the review papers by Sonesson and
Bock (2003), Grigg et al. (2003), and Grigg and
Farewell (2004a) are highly recommended. Readers
can use www.scholar.google.com to access many pa-
pers on this topic.

In health-care surveillance and public-health mon-
itoring, the arguments for the use of CUSUM charts
based on the likelihood ratio approach of Page
(1954) to detect sustained changes in Phase II are
far more convincing than those for the use of the
RSPRT based on error probabilities and Wald’s ap-
proximations, the sets method, and the CRAM and
VLAD displays. Spiegelhalter (2004) also preferred
the CUSUM approach. The CUSUM chart can be
applied for any specified underlying probability dis-
tribution. In addition, it can be risk adjusted, as de-
scribed by Steiner et al. (2000), based on meaningful
performance criteria, and has optimality properties
with respect to its ability to detect process shifts.

Not everyone currently shares this view regarding
the CUSUM chart. Rogers et al. (2004), for example,
stated that the CUSUM chart, the RSPRT method
based on error probabilities, and the CRAM/VLAD
approaches were all equally valid, with the choice a
matter of personal preference. The term cumulative
sum chart is often used to refer to all three of these
quite different methods. Poloniecki et al. (2004) fa-
vored the CRAM chart, although it is not the case,
as they stated, that use of a CUSUM chart requires
an external benchmark or standard.

Because the CRAM and VLAD plots are more in-
tuitive than the CUSUM chart, however, one could
plot these and use the CUSUM chart to indicate
when trends are significant. This is essentially the
approach of Sherlaw-Johnson (2005), but there is
no need for decision limits on the VLAD or CRAM
charts, however, because the CUSUM chart could be
run in the background.

The RSPRT method is a generalization of the
usual one-sided CUSUM chart with a reset value
not necessarily equal to zero. If used, these charts
should be designed based on run-length perfor-
mance measures such as ARL, ANOS, and ATS, as
recommended by Reynolds and Stoumbos (2000a,
2000b, 2001). It is strongly recommended in general
that run-length properties and performance mea-
sures such as ANOS and ATS replace the use of er-
ror probabilities in Phase II control chart design and
analysis. Error probabilities can be applied meaning-
fully only in a few monitoring situations, e.g., in the
use of a single SPRT or the use of a Shewhart chart
with known in-control parameter values.
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It is recommended that a clearer distinction be
made in the health-related SPC literature between
Phase I and Phase II applications and methods.

For cross-sectional attribute data, the funnel chart
seems preferable to either the league table or its con-
trol chart-type competitors.

Industrial practitioners are encouraged to consider
the usefulness of risk-adjustment and the potential
benefit of using spatial data to detect emerging clus-
ters of nonconforming items or nonconformities on
items. These are fundamental approaches in public-
health surveillance, but have not been applied thus
far in industry. On the other hand, the regression-
adjusted variables control charts might prove to be
very useful in health-care applications.

Industrial practitioners and industrial SPC re-
searchers are also encouraged to investigate further
health-care and public-health applications of SPC.
The need for improved health care is well established
and the role of surveillance in public health is grow-
ing in importance. Practitioners and researchers in
industrial statistics have the opportunity to make
some additional important contributions to the the-
ory and application of health-related surveillance.
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