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ABSTRACT 
There is considerable interest in the use of statistical 
process control (SPC) in healthcare. Although SPC is part 
of an overall philosophy of continual improvement, the 
implementation of SPC usually requires the production of 
control charts. However, as SPC is relatively new to 
healthcare practitioners and is not routinely featured in 
medical statistics texts/courses, there is a need to explain 
the issues involved in the selection and construction of 
control charts in practice. Following a brief overview of 
SPC in healthcare and preliminary issues, we use a 
tutorial-based approach to illustrate the selection and 
construction of four commonly used control charts 
(xmr-chart, p-chart, u-chart, c-chart) using examples from 
healthcare. For each control chart, the raw data, the 
relevant formulae and their use and interpretation of the 
final SPC chart are provided together with a notes section 
highlighting important issues for the SPC practitioner. 
Some more advanced topics are also mentioned with 
suggestions for further reading. 

There is considerable interest in the use of 
statistical process control (SPC) in healthcare.1–5 

While SPC is part of an overall philosophy aimed at 
delivering continual improvement, the implemen-
tation of SPC usually requires the production of 
control charts.1 Since SPC is relatively new to 
healthcare and does not routinely feature in 
medical statistics texts/courses, there is a need to 
explain some of the basic steps and issues involved 
in selecting and producing control charts.1 The case 
for SPC has been made previously1 6; here we show 
how to plot control charts. With the help of 
illustrative examples, this paper aims to provide 
guidance on the selection and construction of 
control charts that are relevant to healthcare. Some 
more advanced topics will also be mentioned with 
suggestions for further reading. 
The primary objective of using control charts1 is 

to distinguish between common (chance) and 
special (assignable) causes of variation. The former 
is generic to any (stable) process and its reduction 
requires action on the constraints of the process,7 

whereas special cause variation requires investiga-
tion to find the cause and, where appropriate, 
action to eliminate it. The control chart is one of 
an array of quality improvement techniques that 
can be used to deliver continual improvement. 
Other quality improvement tools have been 
described elsewhere.8–11 

PRELIMINARY ISSUES 
Before constructing control charts, it is essential to 
have a clear aim and clear action plans on how 
special cause data points will be investigated, or 

how a process exhibiting only common cause 
variation might be improved. Ensure that indi-
viduals involved in the project are aware of the 
SPC approach to understanding variation.1 

Furthermore, the data collection method should 
be designed to provide a dataset that adequately 
reflects the underlying process. Issues such as 
measurement system analysis, sampling, rational 
subgrouping and operational definitions are rele-
vant to this and have been discussed elsewhere.8–11 

In industrial practice, it has been found useful to 
distinguish between two phases in the application 
of control charts.12 In phase I, historical data are 
used to provide a baseline, assess stability, detect 
special causes and estimate the parameters that 
describe the behaviour of the process. Phase II 
consists of ongoing monitoring with data samples 
taken successively over time and an assumed 
underlying probability distribution which is appro-
priate to the process. Shewhart control charts are 
highly recommended for phase I whereas cumula-
tive sum (CUSUM) and exponentially weighted 
moving average (EWMA) charts have been shown 
to detect smaller process shifts in phase II, 
although it is generally acknowledged that a 
combination of charts is likely to be advanta-
geous.12 

INTERPRETING A CONTROL CHART 
Control charts include a plot of the data over time 
with three additional lines—the centre line 
(usually based on the mean) and an upper and 
lower control limit, typically set at ¡3 standard 
deviations (SDs) from the mean, respectively. 
When data points appear, without any unusual 
patterns, within the control limits the process is 
said to be exhibiting common cause variation and 
is therefore considered to be in statistical control 
(or stable). However, control charts can also be 
used to identify special causes of variation. There 
are several guidelines that indicate when a signal of 
special cause variation has occurred on a control 
chart. The first and foremost is that a data point 
appears outside the control limits. Since the 
control limits are usually set at 3 SD from the 
mean, we can state that for a process which is 
producing normally distributed data (only really 
demonstrable in artificial simulations) the prob-
ability of a point appearing outside the precisely 
determined phase II control limits (upper or lower 
limit) is about 1 in 370. Although such a calcula-
tion gives some guidance about the ‘‘statistical 
performance’’ of this particular rule, it is important 
not to deem normality as a precondition on the use 
of a control chart11–13—we return to this issue later. 
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Several other tests can also detect signals of special cause 
variation based on patterns of data points occurring within the 
control limits.8–11 Although there is disagreement about some of 
the guidelines, three rules are widely recommended: 
c A run of eight (some prefer seven) or more points on one 

side of the centre line. 

c Two out of three consecutive points appearing beyond 2 SD 
on the same side of the centre line (ie, two-thirds of the way 
towards the control limits). 

c A run of eight (some prefer seven) or more points all 
trending up or down. 

Lee and McGreevey14 recommended the first rule and the 
trend rule with six consecutive points either all increasing or all 
decreasing. Any test for runs must be used with care. For 
example, Davis and Woodall15 showed that the trend rule does 
not detect trends in the underlying parameter, and the CUSUM 
chart can work better than the runs rules in phase II, as shown 
by Champ and Woodall.16 Practitioners should note that, as the 
number of supplementary rules used increases, the number of 
false alarms will also tend to increase. 
Another rule is that patterns on the control chart should be 

read and interpreted with insight and knowledge about the 
process. This will help the user to identify those unusual 
patterns that also indicate special cause variation but may not 
be covered in the three rules above. For example, imagine a 
process that performs suboptimally every Monday (and in so 
doing, produces a data point near, but not beyond, the lower 
control limit). If a day-by-day control chart is plotted, the 
pattern for Monday would be repeated every seven data points. 
Although the three rules above do not capture this scenario, 

clearly, consideration of the process would raise the question, 
why Mondays? On the other hand, there is a natural human 
tendency to see patterns in purely random data. 

SELECTING THE RIGHT CONTROL CHART 
There are many different types of control chart,5 10  11  and the 
chart to be used is determined largely by the type of data to be 
plotted. Two important types of data are: continuous (mea-
surement) data and discrete (or count or attribute) data. 
Continuous data involve measurement—for example weight, 
height, blood pressure, length of stay and time from referral to 
surgery. Discrete data involve counts (integers)—for example, 
number of admissions, number of prescriptions, number of 
errors and number of patients waiting. 
For continuous data that are available a point at a time (ie, 

not in subgroups) the xmr-chart (also known as the individuals 
chart) is often appropriate. For discrete data, the p-chart, u-chart 
and the c-chart are relevant. We will show how to construct the 
xmr-chart, p-chart, u-chart and c-chart using worked examples. 
Several software packages that produce control charts are now 
available. We used WinChart Professional, developed by Prism 
Europe Consultancy (http://www.winchart.net/index.htm) to 
produce our charts, but all the charts can be easily prepared 
using popular spreadsheet packages. 

The xmr-chart 
Consider the data in the top panel of fig 1, which shows the 
systolic blood pressure (mmHg) readings for a patient (A 
Ibrahim, personal communication, 2005) in the morning over 26 
consecutive days. Since these are measurement data, we shall 

Figure 1 Example xmr-chart constructed by using systolic blood pressure readings of a patient. The top panel shows the data and the moving ranges, 
the middle panel is the x-chart and the lower panel is the mr-chart. 
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plot them using an xmr-chart. The xmr-chart consists of two 
charts—the x-chart and the mr-chart. The x-chart is a control 
chart of the n observed values, x1, x2, …,  xn, and the mr-chart is a 
control chart of the moving ranges of the data (explained 
below). 
The first step in producing an xmr-chart is to calculate the 

magnitudes of the differences between successive values of the 
data (ie, the moving ranges). In our case, the difference between 
the second and first reading is 1722169 = 3, …, and the 
difference between the twenty-sixth reading and the twenty-
fifth reading is 1742181 = 27, but we drop the minus sign as 
we are only interested in the magnitude of the difference, not 
the direction. The moving ranges are also shown in the top 
panel of fig 1. 
In the second step, to produce the x-chart, plot the blood 

pressure readings (x) on a chart against time. The central line for 
this chart is given by the mean of x, which is denoted by and 
is calculated thus: 

So, indicates where to place the central line (ie, at 173.2 on 
the y-axis). The control limits are based on Shewhart three-
sigma limits with sigma (the process standard deviation) being 
estimated by the mean moving range divided by the 
empirical constant 1.128. Thus, since 3/1.128 = 2.66, the control 
limits for the x-chart are given by the formula: 

x 

The value of is obtained as follows: 

Hence the control limits are: 

The middle panel of fig 1 shows the x-chart for these data. 
The reading at day 6 is indicated as being unusually low. 
In the last step, for producing the moving range (mr) chart, 

plot the moving ranges against time. The centre line is simply 
the mean moving range and the upper control limit is 
given by which gives 35.9. The lower control limit for 
a mr-chart is taken to be 0. The mr-chart is shown in the lower 
panel of fig 1. 

Notes 
Although the estimation of the process standard deviation 
(sigma) is based on an underlying normal distribution, it is 
important to appreciate that the xmr-chart is robust (like other 
exploratory tools) to departures from the assumption of 
normality. Thus it is not necessary to ensure that the data 
behave according to the normal distribution before plotting a 
control chart.5 10–12 When the data are clearly not normally 

distributed the statistical performance measures of the charts 
evaluated under the assumption of normality cannot be trusted 
to be accurate.5 

One characteristic of time-ordered data that should be 
assessed is independence over time. Independence means that 
there is no relationship or autocorrelation between successive 
data points. With positively autocorrelated data, there will be a 
tendency for high values to follow high values and low values to 
follow low values, resulting in cyclic behaviour. With negatively 
autocorrelated data (less common in applications) high values 
tend to follow low values and vice versa. Wheeler17 shows that 
even with moderate autocorrelations, the xmr-chart behaves 
well (ie, the control limits remain similar), but when the 
correlation is large (eg, with a lag 1 correlation coefficient r.0.6) 
then the control limits need to be widened by a correction 
factor. However, Maragah and Woodall18 found that even 
moderate autocorrelation can adversely influence the statistical 
performance of a chart to the extent that time-series based 
methods may be more appropriate for autocorrelated data. A 
common approach is to model the time series and use control 
charts on the residuals to detect changes in the process. 
It is possible that sometimes the lower control limit will be 

below 0. If the data under question come from a process in 
which negative measurements are not feasible then the lower 
control limit is customarily reset to 0 to reflect this. It is often 
stated that 20–25 data points are needed on an xmr-chart before 
the limits are sufficiently ‘‘firmed-up’’ so that if a process is 
showing common cause variation over these 20–25 data points 
then we can confidently conclude that it is stable.9 This is 
reasonable advice, but it does not imply that a control chart 
with fewer data points is not useful.17 With fewer data points, 
the resulting control limits are regarded as being ‘‘soft’’17 or 
‘‘provisional’’ control limits. In practice, where there is a stream 
of data, ‘‘provisional’’ control limits can be computed and 
refined (firmed up) with additional data in due course. Another 
important reason for re-computing the control limits is when 
knowledge about the underlying process deems it necessary (eg, 
a revised definition of the data, material changes to the process, 
etc.). Jensen et al19 reviewed the literature on the effect of 
estimation on control chart performance. They showed that 
sample sizes need to be fairly large to achieve the statistical 
performance expected under the known parameters case. 

Limitations 
The xmr-chart is a robust, versatile chart that has been used 
with a variety of processes. However, when the underlying data 
exhibit seasonality or the data are for rare events then 
preliminary work with the data is required before it can be 
placed on an xmr-chart.20 There is disagreement in the literature 
on the use of the xmr-chart.5 Some have argued that the EWMA 
chart is superior to the xmr-chart in phase II applications. Others 
have shown that for time-between-events data, or successes-
between-failures data, other charts21 22 are superior. However, 
the xmr-chart continues to be a useful, if not always optimal, 
tool for identifying special causes of variation in many practical 
applications.17 Even when the data are from a highly skewed 
distribution (eg, exponential waiting times, see Normality 
section below) a straightforward double square root transfor-
mation (y = !!x) will often render the data suitable for an xmr-
chart.23 According to Wheeler, the xmr-chart is even useful when 
considering count (attribute) data (see Wheeler17 20 for further 
details). 
It is customary to produce the xmr-chart using the mean (of 

the data and the moving ranges) statistic for the centre line. 
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However, the median statistic may also be used, but the 
constants used in the formulas to produce the three-sigma 
limits will be different11 (3.145 instead of 2.66 for the x-chart 
and 3.865 instead of 3.267 for the mr-chart). Wheeler and 
Chambers11 suggest that when the mean moving range appears 
to be inflated by just a few data points, xmr-charts based on the 
median may be a more suitable choice, because the median 
statistic, although less efficient in its use of the data compared 
with the mean, affords greater resistance (to extreme data 
points) than the mean. 

Normality 
It is sometimes argued that a precondition to the use of a 
control chart is for assumptions of normality to be met.13 17 This 
is not correct. (This issue has been discussed in depth by 
Woodall.12) Control charts have been shown to be robust to the 
assumptions of normality. Furthermore during phase I applica-
tions the distributional assumption cannot even be checked 
because the underlying process may not be stable. As special 
causes of variation are removed the process becomes more 
stable. Also the form of the hypothesised distribution becomes 
more apparent and useful in defining the statistical performance 
characteristics of the control chart. According to Woodall,5 

during phase I applications, practitioners need to be aware that 
the probability of signals of special cause variation depend 
primarily on the shape of the underlying distribution, the degree 
of autocorrelation and the number of samples. 
The preceding arguments do not imply that there is nothing 

to gain in checking assumptions of normality. A useful 
exploratory graphical method for assessing normality is the 
normal probability plot10 23 (which is available in most statistical 
software packages). A normal probability plot is a graphical 
method for determining if a given set of data are consistent with 
an underlying normal distribution. We will illustrate its use 
with data (n = 100) generated from an exponential distribution 
with a rate parameter of 0.2, producing a highly skewed 
simulated time-to-event data set. The left panel of fig 2 shows a 
normal probability plot using the raw data. If the data were 
plausibly normal then the points would be expected lie close to 

the diagonal line of a normal probability plot. This is clearly not 
the case. However, if we transform the data using the double 
square root transformation y = !!x (see fig 2 right panel), the 
transformed data are now much more plausibly normal and 
therefore more appropriate for plotting on an xmr-chart. So, 
with the caveat that normality is not a precondition on the use 
of a control chart, we suggest that the production of a normal 
probability plot is potentially useful, especially in identifying 
highly skewed data. But ensure that concepts of ‘‘statistical 
outliers’’ on the normal probability plot are not confused with 
‘‘signals’’ of special cause variation on a control chart. The 
former may be used as evidence against normality (in a formal 
statistical test for normality) but the latter may guide a 
practitioner towards finding and removing special causes of 
variation. 

The p-chart 
Consider the data in the top panel of fig 3. The data show the 
number of patients who were admitted with a fractured neck of 
femur and the number who died over 24 consecutive quarters 
(M Narayan-Lee, personal communication, 2006). To find out 
whether variation in mortality over time is consistent with 
common cause variation, we shall use a p-chart (where p stands 
for proportion). 
To plot a p-chart for the above data, use the notation given in 

the data rows of fig 3. Plot the proportion of deaths (p) on the y-
axis and the time (quarters) on the x-axis and then add the 
central line and the control limits as they are calculated. To 
determine the central line, compute the overall mean mortality: 

= = 
1406 

345 
= 0.25 

x i 

n 

 
=1 

n i 

n 

 

i 

=1i 

Thus, indicates where to place the central line (ie, at 0.25 on 
the y-axis). To derive the control limits we apply this overall 
to each of the quarters cases (ni) in turn using the formula: 

Figure 2 Normal probability plots. Left panel: the raw exponential data (n = 100, rate parameter = 0.2); right panel: the transformed data. 
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So, for example, for quarter 1 (n1 = 56) we get the following 
control limits: 

This calculation is repeated for each quarter to finally produce 
the control chart shown in fig 3. The control limits thus produced 
are stepped (see fig 3) because they reflect the changes in the 
sample sizes between quarters. There is no evidence of special 
cause variation. Improvement in this case requires a closer look at 
the constraints of the process,7 perhaps with the aid of a Pareto 
chart10 showing the most frequent reasons for death. 

Notes 
The assumptions of the p-chart17 are that the events (deaths in 
our case) are: (a) binary (can only have two states, eg, alive/ 
dead, infected/not infected, admitted/not admitted, etc); (b) 
have a constant underlying probability of occurring; and (c) that 
they are independent of each other. One simple process that can 
meet all these requirements is the repeated tossing of a coin, but 
it is indeed impossible for a healthcare process to meet all these 
assumptions exactly. Nevertheless experience indicates that the 

p-chart is useful in practical circumstances, even where there is 
gross departure from the ideal conditions. For instance, 
Deming24 shows an example of inspection data that appeared 
to have much less variation than expected. The control limits 
were very wide and the data appeared to ‘‘hug’’ the central line. 
This ‘‘under-dispersion’’ was subsequently traced to an inspec-
tor who was too frightened to record the proper failure rates, 
choosing instead to make up the figures to be just below the 
minimum target. Clearly, assumptions (b) and (c) were being 
violated. 
Conversely, when the observed variation is much greater than 

expected a substantial number of the data points fall outside the 
control limits. This is termed ‘‘over-dispersion’’ and often 
indicates that assumption (b) and/or (c) have been violated. 
While there are statistical techniques for allowing for ‘‘over-
dispersion’’, this technical fix25–27 does not itself address the 
fundamental question of why ‘‘over-dispersion’’ exists. This 
requires detective work to understand the underlying process 
and learn why it is behaving in this way. (Wheeler recommends 
using the xmr-chart in this situation.17) 
When using the p-chart to plot percentages, all the propor-

tions, the centre line and the control limits are multiplied by 
100. In the case where the upper control limit is above 1, or the 
lower control limit is below 0, such limits are customarily reset 
to 1 and 0, respectively, because proportions cannot be negative 
or larger than 1. We do not have a signal if the observed value 
was to fall exactly on the reset limit. 
The standard deviation of a binomial variable is usually 

derived using , hence giving the control limits as 

Figure 3 Example p-chart based on the proportion of deaths following admission to hospital for patients with a fractured neck of femur. 
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. According to Xie et al28 this approximation is 
good as long as and as is the case in the 
worked example above, because under these conditions the 
binomial distribution is fairly symmetrical and so the Shewhart 
three-sigma concept works well. However, when these condi-
tions are not satisfied, then a different approach is required. One 
method is to calculate the exact limits using the probability 
distribution function of the binomial distribution, which, with 
modern software such as popular spreadsheet packages and 
statistical packages, is relatively straightforward. Other 
approaches involving transformations and regression-based 
limits have also been documented.10 29 

A common application of a graph similar to the p-chart is a 
comparison of the performance of healthcare providers5 30  over a 
fixed period. In this instance there is no time order to the data. 
The proportions, such as the proportions of readmissions, are 
plotted as a function of the subgroup sizes (n). The resultant 
chart is a ‘‘funnel’’ shape which is visually attractive and 
statistically intuitive because the funnel shows how the 
variation due to ‘‘chance’’ reduces with increasing sample sizes. 
This avoids the misleading ranking of the providers in league 
tables and its attendant negative consequences.3 30  

The u-chart 
Consider the data in the top panel of fig 4 which shows the 
number of falls in a hospital department over a 13-month 
period.31 To investigate the type of variation in these data we 
shall use a u-chart. 

To plot a u-chart for the above data, plot the fall rate per 
patient-day (u) on the y-axis and the time (months) on the x-
axis. Then add the central line and the control limits as they are 
calculated. To determine the central line, compute the overall 
fall rate ( ) which is given by the total number of falls divided 
by the total number of patient-days: 

Thus, indicates where to place the central line (ie, at 
0.00371 on the y-axis). To derive the control limits we apply 
this overall average and the number of days in each time 
period (ni) in turn using the formula: 

So for example, for October 2004, (n1 = 1048) we get the 
following control limits: 

Figure 4 Example u-chart based on number of falls per patient-day over a 13-month period. 
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This calculation is repeated for each time period to finally 
produce the control chart shown in fig 4. When the calculated 
lower control limit falls below 0 it is customarily reset to 0 
because count/attribute data cannot fall below 0. As can be seen 
from fig 4, the control limits thus produced are stepped because 
they reflect the changes in the area of opportunity (number of 
patient-days) between sampling periods. There is evidence of 
special cause variation in August 2005, which merits further 
investigation. 

Notes 
The assumptions of the u-chart are that the events: (a) occur 
one at a time with no multiple events occurring simultaneously 
or in the same location; and (b) are independent in that the 
occurrence of an event in one time period or region does not 
affect the probability of the occurrence of any other event. 
Although it is rare for all these assumptions to be met exactly in 
practice, experience indicates that the u-chart is useful in 
practical circumstances, even where there is a marked departure 
from the ideal conditions. 
Typically low frequency events (eg, number of major 

complications following surgery) are plotted using u-charts. 
This is appropriate because the calculations for the control 
limits are based on an underlying Poisson distribution which is 
reasonable for infrequent events. To aid communication 
though, the low frequency event is often re-expressed—for 
example, using our falls data, in October 2004 there was 1 fall in 
1048 patient-days, which is 0.000954 falls per patient-day, but 
this can be re-expressed as a rate per 100 patient-days by 
multiplying by 100 (1/1048*100 = 0.0954). Such an adjustment 
will make no difference to the analysis since a u-chart with the 
y-axis as falls per 100 patient-days will give the same messages 
as the one with falls per patient-day, albeit in a unit of analysis 
which may be more intuitive to healthcare practitioners. 

The c-chart 
Consider the data in the top panel of fig 5 which shows the 
number of emergency admissions over 23 consecutive Mondays (1 
December 2003 to 3 May 2004) to one large acute hospital in 
England (personal communication). If we regard the people in 
this hospital’s catchment area as being the underlying popula-
tion from which these admissions occur, we can see that (a) the 
events are relatively low frequency (in comparison with the size of 
the underlying population) but (b) the size of that underlying 
population is unknown. Assuming that the underlying population 
is large and fairly constant, we can analyse these data using a c-
chart, which is essentially a u-chart with ni =1,  i =1,  2,  …,  n. 

For a c-chart, plot the number of admissions (c) on the y-axis 
and the days (time) on the x-axis, and then add the central line 
and the control limits as they are calculated. To determine the 
central line, compute the overall mean number of admissions 
which is given by the total number of admissions divided by the 
total number of days: 

Thus, indicates where to place the central line (ie, at 80.3 on 
the y-axis). The control limits are set at ¡3 times the square 
root of since, as can be shown, the standard deviation of a 
Poisson distribution is the square root of the mean, viz, 

, this gives: 

The final c-chart is shown in fig 5. 

Figure 5 Example c-chart using number of emergency admissions on consecutive Mondays. 
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Notes 
The assumptions of the c-chart are that the events: (a) occur one 
at a time with no multiple events occurring simultaneously or 
in the same location; and (b) are independent in that the 
occurrence of an event in one time period or region does not 
affect the probability of the occurrence of any other event. 
Although it is impossible for all these assumptions to be met 
exactly in practice, experience indicates that the c-chart is useful 
in practical circumstances, even where there is significant 
departure from the ideal conditions. It is important to note 
that the u-chart is preferred to the c-chart when sample sizes or 
areas of opportunity are available and vary considerably. When 
such an area of opportunity information is not available then 
the c-chart is the only real option, provided that it is reasonable 
to assume that the underlying areas of opportunity are 
relatively large and fairly constant—as is the case in our 
emergency admissions example here. 
The control limits for a c-chart are derived from . 

When .1010 as is the case here, the Poisson distribution is 
roughly symmetrical and so the Shewhart three-sigma concept 
works well. However, when .10 is not satisfied, then a 
different approach is required. One method is to calculate the 
exact limits using the probability distribution function of the 
Poisson distribution with the help of computer software or 
statistical tables.10 Other approaches, using transformations as 
well as regression-based limits, have also been suggested.29 

When the computation of the lower control limit produces 
a value below 0,10 which is customarily reset to 0 because the 
process is not capable of producing a negative count. However, 
the negative lower control limit is also an indication that the 
Poisson distribution is not symmetrical and the computation of 
exact limits is then recommended. Furthermore, according to 
Wheeler,17 the c-chart will break down when the mean number 
of events falls below 1, at which point plotting the time 
between events can be helpful.20 

In this worked example we plotted the number of emergency 
admissions on consecutive Mondays instead of consecutive days. 
The reason for this is related to rational subgrouping. Some 
processes are made up of different underlying cause–effect 
subprocesses and an emergency admission to hospitals is one 
example. So for instance we do not expect the probability of an 
emergency admission to hospital to be the same for weekends 
(Saturday/Sunday) and weekdays, nor do we expect Fridays to be 
the same as other weekdays. In other words, the process exhibits 
seasonality. In order not to violate the requirements of rational 
subgrouping, we split the emergency admissions data by day of 
week and used Mondays as an illustrative example. If a control 
chart for emergency admissions for consecutive days is required 
then methods which first deseasonalise the data must be used.20 

Other types of control charts 
We have considered the four types of control chart that will have 
frequent applicability to healthcare. Many more types of control 
chart and related plots are documented in the literature.10 17 These 
include EWMA control charts, CUSUM plots, Q-charts22 and 
number-between-events charts,21 to mention but a few. While 
several of these charts have apparently superior performance 
compared with the basic charts described here, it is important to 
note that generally speaking, they are often not meant to 
completely replace Shewhart control charts; rather they are 
considered to be useful adjuncts.12 An interesting feature of 
the application of control charts to healthcare is the incorporation 
of patient case-mix adjustment, which has been described 

elsewhere.5 25 32–34  Case-mix adjustment is often required to make 
meaningful comparisons between healthcare providers.35 

CHOICE OF THREE-SIGMA LIMITS 
Shewhart argued—on the basis of mathematical theory 
(Tchebysheff theorem)36 and also on the basis on experience 
and pragmatism—that stable processes produce variation 
within limits and that, in the search for economic control of 
variation, these limits can usefully be set at three-sigma. Several 
decades of experience in a whole range of application domains, 
including healthcare, has shown that three-sigma limits are 
indeed useful. Nevertheless this does not imply that the limits 
cannot be changed. According to Nelson,13 the rationale for 
widening or narrowing the limits is a judgement call in which 
the costs of looking for special cause variation, when it does not 
exist, need to balanced against the costs of overlooking such a 
signal, when it does exist. However we must emphasise that 
wherever the control limits are set at a finite positive distance 
from the centre line we risk one of two types of mistake24: 
c type I: to treat an outcome resulting from a common cause 

as if it were a special cause; 
c type II: to treat an outcome resulting from a special cause as 

if it were a common cause. 
It is impossible to reduce the frequency of both errors to 0, but 
what we can do is minimise the economic losses due to either 
kind of mistake. Nevertheless, despite some of the controversies 
regarding the theoretical basis of control charts,12 there is ample 
evidence, increasingly from healthcare, to show that in the 
context of continual improvement, control charts offer major 
benefits which are well worth the effort. 
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APPENDIX 

Summary of formulae for plotting four basic control charts 

Type of data Type of chart Centre line Three-sigma control limits 

Continuous data (x) of which there are n items x-chart 

mr-chart 

Proportion data (p) given by x/n where x 
is the number of occurrences and n is its 
number of opportunities. 

p-chart 

Count data (u) with n observations each 
in a known ‘‘area of opportunity’’ ni 

u-chart 

Count data (c) with n observations each 
with a constant ‘‘area of opportunity’’ 

c-chart 
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