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Abstract 

Background:  The utility of statistical process control (SPC) methods has received growing 
interest in the healthcare community to help improve clinical and administrative processes. 
SPC charts are chronological graphs of process data that are used in many other industries to 
help understand, control, and improve processes and that, although based in statistical theory, 
are easy for practitioners to use and interpret. 

Objectives:  The objective of this article is to provide an overview of SPC charts, the differ-

ent types and uses of control charts, when to use each chart type, their statistical performance, 
and simple methods for determining appropriate sample sizes.  The intended audience in-

cludes practitioners and healthcare researchers seeking either an introduction to these meth-

ods or further insight into their design and performance.  Methods for dealing with rare 
events and low occurrence rates also are discussed. 

Methods:  Recent empirical examples are used to illustrate appropriate applications of each 
chart type, sample size determination, and chart performance.  Sensitivities are calculated and 
tabulated for a wide range of scenarios to aid practitioners in designing control charts with 
desired statistical properties. 

Conclusions:  Control charts are valuable for analyzing and improving clinical process out-

comes.  Different types of charts should be used in different applications and sample size 
guidelines should be used to achieve the desired sensitivity and specificity.  SPC is both a 
data analysis method and a process management philosophy, with important implications on 
the use of data for improvement rather than for blame, the frequency of data collection, and 
the type and format of data that should be collected.  When dealing with low rates, it also can 
be advantageous to collect data on the number of cases or the amount of time between ad-

verse events, rather than monthly rates. 
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Introduction 

This article provides an overview of statistical process control (SPC) charts, the different 
uses of these charts, the most common types of charts, when to use each type, and guidelines 
for determining an appropriate sample size.  The intent is to provide an introduction to these 
methods and further insight into their design and performance beyond what exists in current 
literature.  The utility of control charts to help improve clinical and administrative processes 
has received growing interest in the healthcare community.  For example, see Splaine et al 
[1], Sellick [2], Plsek [3], Benneyan [4], Burnett and Chesher [5], and a comprehensive re-

view in a recent series in Infection Control and Hospital Epidemiology [6, 7].  These meth-

ods are well-established in other industries and have a long history of use for measuring 
process performance and improving outcome quality.  Important healthcare applications in-

clude their use to help reduce rates of adverse drug events, surgical site infections, patient 
falls, central line infections, surgical complications, and many of other types of iatrogenic 
injury and adverse events. 

The estimated total annual national costs in the U.S. of such process defects are staggering, 
including 770,000 to 2 million patient injuries, 8.7 million hospital days, 44,000 to 180,000 
deaths, and $8.8 billion in healthcare costs [8-13].  Studies summarized in the recent National 
Academy of Sciences’ Institute of Medicine report, To Err is Human, also estimated that 
between 45,000 to 98,000 patients die each year in U.S. hospitals from medical errors, more 
than the annual number of deaths in the U.S. from traffic accidents, breast cancer, or AIDS 
[14]. 

It is not surprising that many accrediting and regulatory bodies therefore encourage hospitals 
and HMO s to apply continuous quality improvement methodologies to these process con-

cerns, including the use of statistical methods such as SPC.  For example, the Joint Commis-

sion on Accreditation of Healthcare Organizations recently stated their position on the use of 
SPC as follows [15]: 

An understanding of statistical quality control, including SPC, and variation is es -
sential for an effective assessment process...  Statistical tools such as run charts, 
control charts, and histograms are especially helpful in comparing performance with 
historical patterns and assessing variation and stability. 

A recent paper by several authors from the U.S. Center for Disease Control [16] similarly 
stated that 

Many of the leading approaches to directing quality improvement in hospitals are 
based on the principles of W. E. Deming.  These principles include use of statistical 
measures designed to determine whether improvement in quality has been achieved. 
These measures should include nosocomial infection rates. 

Many epidemiologists also have proposed monitoring infection and adverse event rates con-

tinuously over time in manners that are quite similar to SPC [17-20].  In conventional epide-

miology, in fact, the identification of epidemic and endemic events are related in SPC termi-
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nology to the detection of unnatural and natural variability, respectively.  It also is interesting 
that as early as 1942, the late quality pioneer W. Edwards Deming advocated the application 
of SPC to disease surveillance and adverse healthcare events in the Journal of the American 
Statistical Association [21]. 

As evident in Splaine et al [1], SPC is as much a process management philosophy as it is a 
data analysis method, with several important implications discussed below.  These include 
the use of data for learning and improvement (rather than for assigning blame), the frequency 
of data collection, the type of data and format in which they should be collected, and the ac-

tions taken based on the results.  While details on the mathematics of control charts appear in 
many publications, these topics tend to receive less attention but are equally important to the 
successful use of SPC for process improvement. 

Quality Control Charts 

Overview and Interpretation 

Statistical process control charts are chronological graphs of process data that are used to 
help understand, control, and improve processes - such as infection control or adverse event 
processes - and that, although based in statistical theory, are easy for practitioners to use and 
interpret.  While there are several different types of control charts, the general format and 
interpretation of the most common and simplest type, called a Shewhart control chart, are 
shown in Figure 1.  Some statistic of interest, such as the number of cases of ventilator-

associated pneumonia per 100 device days, is plotted on the chart and interpreted on a 
monthly or weekly basis. 
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Sample Number 

Measurement 
of 

Interest 

Upper Control Limit (UCL) 

Lower Control Limit (LCL)

  Centerline (CL) 

Low probability event 
(Do not expect) 

ow probability event 
Do not expect) 

Natural Range 
of Variation 

(Expect) 
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Figure 1.  General Format and Interpretation of a Statistical Control Chart 
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The three horizontal lines called the center line (CL), the upper control limit (UCL), and the 
lower control limit (LCL) define the central tendency and the range of natural variation of the 
plotted values, assuming that the long-term pneumonia rate, in the above example, does not 
change.  The control limits are computed statistically based on probability distributions such 
as the Gaussian ("normal"), Poisson, or binomial distributions.  As shown in Figure 2 for the 
bell-shaped normal distribution, values that fall outside the upper and lower three standard 
deviation control limits exceed the range within which almost all of the values (99.73% un-

der the normal distribution) are expected to lie if the process remains unchanged and pro-

duces statistically consistent results. 

Clinical or Administrative Value of Interest 

Mean 

0.9973 
(very likely) 

ean minus 
3 standard 
deviations 

Mean plus 
3 standard 
deviations 

.00135 
unlikely) 

.00135 
(unlikely) 

Figure 2.  Relation of Control Limits to Underlying Probability Theory (Normal Distribution) 

Interpretation of values in the tails or outside the control limits is similar to that of conven-

tional hypothesis tests, namely that these values are statistically significant indications that 
the process is producing different results or is not producing outcomes from only one con-

sistent and homogeneous process.  Under the philosophy of quality improvement, the cause 
or causes of the process change or inconsistency should be identified and removed in order to 
achieve a single, stable, and predictable process (i.e., a "state of statistical control" in SPC 
language).  While several different types of charts exist (see below), all are interpreted in es-

sentially this same manner. 

In addition to values outside the control limits, there should be no evidence of non-random 
behavior between the limits, such as trends, cycles, and shifts above or beneath the center 
line.  Various between-limit  rules have been defined to aid in the objective interpretation of 
such data patterns, such as those summarized by Splaine et al [1] and Benneyan [4, 7].  Most 
of these supplementary rules are based on probability calculations of runs of consecutive val-

ues in various zones of the control chart, thereby improving sensitivity but reducing specific-

ity (see below).  See Duncan [22], Grant and Leavenworth [23], and Montgomery [24] for 
further information on the mathematical details of SPC.  Note that control limits should not 
be confused with confidence interval limits, but rather are more analogous to prediction lim-

its. 
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Uses of Control Charts 

It is important to emphasize that control charts have several important, somewhat sequential, 
roles in quality improvement work.  These uses are discussed in greater detail elsewhere [7] 
and include (see Figure 3): 

1. Understanding current and past process performance and its degree of consis-

tency and predictability; 

2. Establishing a "state of statistical control" by identifying and removing causes of 
unnatural (or "special cause") variation so as to achieve a consistent and predictable 
level of process quality over time; 

3. Improving a process by identifying and removing causes of natural (or "common 
cause") variation and by testing whether interventions result in an improvement; and 

4. Monitoring for process deterioration and "holding the gains" by identifying special 
causes of unnatural variation when they arise in the future. 

Understand Past Performance 

Is process unstable or in statistical control? 

Begin trial control charting 

Establish Consistent Process 

Iterative process using trial control charts 

Bring process into statistical control 
Remove sources of unnatural variability until in-control 

Improve Stable Process 
Remove sources of natural variability 

Position the average & reduce variability until acceptable 

Test and verify impact of interventions and improvements 

Monitor Process for Instability 
Maintain a state of statistical control 
Hold the gains 
Identify & remove special causes of unnatural variability 

• 
• 
• 

• 

• 
• 

• 
• 

• 

• 

• 

Figure 3.  Different Uses of Control Charts 
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Establishing a State of Statistical Control 

Note that while the latter two uses of control charts - testing and holding the gains - tend to 
be the most well-known in many popular quality improvement models, the first two activities 
are very important but unfortunately often overlooked or misunderstood.  In many applica-

tions, considerable value exists in "merely" achieving a state of statistical control.  As in 
other industries, many healthcare processes will not be stable and consistent when first ex-

amined and will require significant effort to bring them into a state of statistically consistent 
behavior (i.e., statistical control). 

This activity is referred to as "trial control charting" because of the focus on testing whether 
the process is consistent and on attempting to bring it into a state of operation such that it 
produces consistent and predictable results.  This iterative process occurs over a period of 
time and consists of: 

• constructing an initial trial control chart to test for statistical control, 

• searching for and removing assignable causes of unnatural variability, 

• removing all affected data and recalculating the center line and control limits from the 
remaining data (with the addition of new data if available or necessary), 

• searching a second time for causes of unnatural variability, 

• removing these data and reconstructing the control chart a second time as above, and 

• repeating this process as many times as is necessary until a state of statistical control 
is reached. 

As an analogy, this iterative improvement process is akin to removing rocks above the sur-

face of a pond (i.e., the upper limit), thereby lowering the water level only to identify a next 
layer of rocks now exposed above the surface, and repeating this process until a smooth con-

sistent water horizon is achieved.  Note that the trial control charting process typically is 
conducted retrospectively on historical data with new data added as they become available, in 
essence investigating if the process has been in statistical control in the past and up to the 
present time.  In many cases, after causes of inconsistent variation are removed, the affected 
time periods of data can be determined and removed from the working data set that is used to 
compute and re-compute the control limits, so that it is not necessary to discard all historical 
data and collect an entire new data set. 

Practitioners sometimes are discouraged in this first phase of quality improvement by the 
amount of time and effort required in some cases to achieve a predictable process.  It is im-

portant to emphasize, however, that this is a critical necessary first step and that only when a 
state of statistical control has been established can it be stated that a single process even ex-

ists.  This is because without statistical control, there is no consistent process producing the 
outcomes; if there were, by definition the process would exhibit a state of statistical control. 
Until then statements about quality levels, projections of occurrence rates, and predictions 
about future outcomes all are invalid and misleading, despite any amount of wishful thinking 
to the contrary. 
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Monitoring and Improving 

Once a stable process exists (i.e., a state of statistical control has been established), the con-

trol chart is used to monitor the process for signals that a change has occurred ("special 
cause" of "unnatural" variability in SPC terminology) - points outside the control limits or 
violations of any of the within-limit rules.  If these are changes for the worse, such as an in-

crease in the ventilator-associated pneumonia rate, then an effort should be made to discover 
the causes so that they can be removed and prevented in the future.  Causes of changes for 
the better also should be investigated and understood so that they can be implemented on a 
regular basis. 

While this monitoring activity tends to be the most familiar use associated with control 
charts, it also is the most passive use from a process improvement perspective as it is focused 
primarily on maintaining the status quo.  It also is important to note that being in a state of 
statistical control must not necessarily imply that the process is performing at an acceptable 
level, or that the outcome rate is good, and that either an increase or decrease (i.e., an im-

provement) in the outcome rate represents an out-of-control process.  Statistical control is 
defined as all data being produced by the same constant process and probability model, 
which may or may not have an acceptable mean or variance. 

For example, hypothetically it is possible to have a stable and consistent adverse drug event 
rate of 50% (1 of every 2 medications), although this obviously would be far from accept-

able.  The improvement focus at this stage now is on the difficult task of identifying changes 
to the existent (and consistent) process that will result in improvements.  Changes to the ex-

istent standardized process will be necessary in order to improve outcomes.  The role of con-

trol charts here is to help test and verify if these interventions actually result in the hypothe-

sized benefits, as evidenced by statistical out-of-control signals of improvements. 

Types of Control Charts 

The most familiar types of control charts, called Shewhart control charts, originally were de-

veloped by Shewhart in 1924, one for each of several types of data that are commonly en-

countered in practice.  Each of these types of data can be described by a statistical distribu-

tion that is used to determine the expected value, theoretical standard deviation, and natural 
variation of the data (i.e., the center line and control limits).  Examples of the most common 
types of data distributions - the normal, binomial, Poisson, and geometric - are shown in Fig-

ure 4.  While many other types of data exist, these distributions will be familiar to many 
readers as very common and appropriate in many applications. 

One of the most common difficulties that practitioners have in using SPC is determining 
which type of control chart they should construct.  As shown in Table 1, the chart type to use 
in any particular situation is based on identifying which type of data is most appropriate.  For 
example, the three most common types of control charts should be used in the following 
situations: 



Benneyan: Statistical Process Control Charts page 7 

• Either an np or a p control chart should be used when analyzing discrete data that are 
distributed according to a binomial distribution; 

• Either a c or u control chart should be used when analyzing count data that are dis-

tributed according to a Poisson distribution; 

• Both an X-bar and an S chart should be used together for continuous data that are 
distributed according to a normal distribution. 

Figure 4b: Binomial Figure 4a: Normal 

Figure 4c: Poisson Figure 4d: Geometric 

Figure 4.  Four Common Types of Data Distributions 

Many standard statistical packages will construct these types of control charts, as well as plot 
histograms or provide mathematical "goodness-of-fit" tests to help verify the type of distri-

bution that fits a particular data set.  See Benneyan [4, 6] for further discussion on the dis-

tinctions between each type of data and examples of each type of control chart. 

Figure 5 illustrates Xbar and S charts for the mean and standard deviation, respectively, of 
the time from decision to the first incision for emergent Cesarean deliveries.  Note that this 
process appears fairly consistent with the exception of the three weeks when either the Xbar 
or the S chart is out-of-control.  The appropriate first action in this case therefore would be to 
investigate what occurred during these time periods to cause these statistically significant dif-

ferences in outcomes.  Both charts are necessary, only for normal data, because the estima-

tion of the Xbar control limits assumes that the standard deviation is in statistical control and 
homogeneous and because either the mean or standard deviation can go out-of-control inde-

pendently of the other.  For example, Benneyan [6] describes an experience in which the 
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Table 1.  Common Types of Control Charts and Example Applications 

Type of 
Control Chart 

Probability 
Distribution 

When Appropriate to Use Examples 

Xbar and S 

(Plot sample 
mean and stan-

dard deviation) 

Normal (Gaussian) Continuous measurements 
with "bell shape" 

Note:  Xbar and R sometimes 
used as an alternative, al-

though statistical properties 
are not as good.  (’Individuals’ 
chart should be used only as a 
last resort for same reason.) 

Length of patient waits 

Procedure durations 

Timing of perioperative antibiotics 

Physiologic data 

Time from decision to first incision 
for emergent Cesarean deliveries 

np 

(Plot sample 
total) 

binomial Total number of dichotomous 
cases generated by a process 
that result in a certain outcome 

Note:  Sample size assumed 
constant for each sample 

Number of surgeries that develop a 
surgical site infection 

Number of patients who receive an 
antibiotic on time 

Number of patients readmitted 

p 

(Plot sample 
fraction) 

binomial Fraction of dichotomous cases 
generated by a process that 
result in a certain outcome 

Note:  Sample size can change 
from sample to sample 

Fraction of surgeries that develop a 
surgical site infection 

Fraction of patients who receive an 
antibiotic on time 

Fraction of patients readmitted 

c 

(Plot sample 
rate) 

Poisson Total number of some event, 
where no exact upper bound, 
can be more than one event 
per patient or sampling unit 

Note:  Assumes constant op-

portunity or sampling area in 
each time period 

Number of patient falls 

Number of central line infections 

Number of ventilator associated 
pneumonias 

Number of needle sticks 

u 

(Plot sample 
rate adjusted per 
common base) 

Poisson Rate of some event, where no 
exact upper bound, can be 
more than one event per pa-

tient or sampling unit 

Note:  Rate is adjusted to av-

erage per some common sam-

pling denominator size 

Average number of patient falls per 
100 patient days 

Number of central line infections 
per 100 line-days 

Number of ventilator associated 
pneumonias per 100 ventilator days 

g 

(Plot count 
between events) 

geometric Number of cases or amount of 
time between occurrences. 

Note:  Particularly useful for 
rare events or when rate is low 
(e.g., rate < .01) 

Number of surgeries between infec-

tions 

Number patients between compli-

cations 

Number days between adverse drug 
events 

Number days between needle sticks 
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average timing of perioperative prophylaxis was equal to the target of 60 minutes prior to the 
1

st
 incision and appeared in statistical control, but the standard deviation was excessively 

large and not in-control.  Out of control values on the Xbar or S chart indicate that the proc-

ess mean or standard deviation is not in statistical control, respectively, somewhat analogous 
to T and F tests for statistically significant differences in means and variances. 

Average Decision-to-Incision Time 
(Xbar Chart) 

3 5  

4 0  

4 5  

5 0  

5 5  

1  2  3  4  5  6  7  8  9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0  

Week Number 

Standard Deviations of Decision-to-Incision Time 
(S Chart) 
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1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 

Week Number n = sample of 10 charts per week 

Figure 5.  Example of Xbar and S Control Chart for 
Emergent Cesarean Delivery Decision to Incision Delays 

By contrast, the p control chart in Figure 6 illustrates a surgical site infection rate that ap-

pears consistent and in-control but is higher than should be acceptable.  Whereas this p chart 
is for the fraction of surgeries that develop infections, an np chart alternatively could be used 
for the total number of surgeries to develop infections.  The appropriate action in this case 
would be to brainstorm and test process changes that might reduce the infection rate, using 
the control chart to verify whether improvement occurs.  The u control chart in Figure 7, 
conversely, illustrates a ventilator-associated pneumonia rate that is both in-control and fairly 
decent.  While improvement efforts should continue, this chart might be used primarily to 
detect increases and "hold the gains".  Because the number of surgeries, device-days, and so 
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on typically is not constant in each sample, p and u charts tend to be used more often than np 
and c charts, respectively, with the differing sample sizes resulting in control limits that vary 
over time (as shown in Figures 6 and 7). 
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Figure 6.  Example of p Control Chart of Surgical Site Infection Rate 
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Figure 7.  Example of u Control Chart for Ventilator Associated Pneumonia Rate 

Note that if the data do not exhibit the appropriate shape and distribution for one of the above 
control charts, then an alternative chart should be constructed [25, 26].  As a general rule of 
thumb, if a histogram does not exhibit a fairly symmetric bell-shape, such as those shown in 
Figures 4a through 4c, then none of the standard charts may be appropriate or sample sizes 
may be too small, and further advice should be sought.  As one example, a fourth type of 
control chart called g and h charts should be used for count data with a geometric distribu-

tion, which can be useful when dealing with rare events (see below). 
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Data and Statistical Issues 

Distinctions Between Traditional Measurement and SPC 

As the above examples illustrate, several important distinctions exist between traditional 
measurement practices for quality assurance and the role of measurement when using SPC 
for process improvement.  Most importantly, data on almost all key indicators should be col-

lected and evaluated much more frequently via control charts and closer to the continuous 
manner in which they actually are produced, rather than retrospectively in large aggregate 
quantities.  For example, a typical current manner of reporting key performance data is to 
summarize several aggregate values annually, semiannually, or quarterly such as shown in 
Table 2. 

Table 2.  Traditional Aggregate Data Format for Reporting and Quality Assurance 

Measure 1998 1999 2000 

Cesarean Section Births 5.6 / 100 21 / 100 19 / 100 

Average Maternity Length-of-Stay 66 hours 58 hours 61 hours 

Needle Sticks 98 120 113 

Surgical Nosocomial Infections 6.9 / 100 patients 3.4 / 100 patients 4 / 100 patients 

Breast Wound Infections 12% 3% 6% 

Adverse Drug Events 105 68 83 

Methicillin-resistant Staphylococcus 
aureus (MRSA) 

325 / 1677 (19%) 525 / 1629 (32%) 694 / 1735 (40%) 

Ventilator-Associated Pneumonia 21.7 / 1000 
ventilator days 

14.3 / 1000 ventilator 
days 

16.5 / 1000 
ventilator days 

CR BSI 1.7 1.4 3.1 

ICU Lengths-of-Stay 4.9 days 5.3 days 5.1 days 

Instead, process data now should be collected longitudinally in real-time and in much smaller 
samples in the format necessary for control charts shown in Figure 8.  These samples are 
called "subgroups" in SPC terminology in order to distinguish them from the total sample of 
all data in all subgroups together.  Note that this format and use of data for the purpose of 
process improvement is a fundamental change from the format used for the traditional pur-

pose of internal or external reports and documentation.  In many settings, the implication is 
that current data collection systems will need to be revised significantly in order to provide 
the necessary data in the necessary format.  Subgroup size guidelines also differ from tradi-

tional sample (total) size calculation methods, as discussed below. 
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Individual Subgroup Observations 

1         2         3         4    .  .  .                   n 

Time (Within Subgroups) 

(eg, Counts, 
Proportions, 
Averages, 
St. Devs.) 

1 

2 

3 
. 
. 
. 

k 

S
u

b
g

ro
u

p
 N

u
m

b
e
r

Time 
(Between 

Subgroups) 

X k1 X k2 Xk4 X knX k3 . . . 

X 11 X 12 X14 X 1nX 13 . . . 

X 21 X 22 X 24 X 2nX 23 . . . 

X 31 X 32 X 34 X 3n X 33 . . . 

Subgroup 
Statistics 

Note:  Samples are called subgroups in SPC terminology.  This example contains k samples of data recorded over 
a significant period of time, with each sample containing n values taken over a shorter period of time.  The rate or 
other statistic of interest is calculated for each small subgroup sample and plotted on a control chart in real time. 

Figure 8.  Longitudinal Data Collection Format for SPC and Process Improvement 

Also note that a minimum of at least 25 to 35 subgroups of data collected over time are neces-

sary in order to conclude reliably that a process is in statistical control, a requirement that has 
radical implications on how data should be gathered and analyzed within many organizations 
and on the frequency of data collection.  Using only aggregate quarterly data, for example, can 
take 6 to 9 years to verify a state of statistical control.  Many current data systems therefore 
are woefully insufficient for the purpose of SPC and improvement, whereas plotting smaller 
amounts of data on control charts more frequently - weekly or even daily if at all possible - is 
a much better approach.  In manufacturing and service applications, values are plotted hourly 
or at least daily so that the process can be monitored and controlled in real time. 

Chart Calculations and Use of 3 Standard Deviation Limits 

The conventional formulae for all Shewhart control charts are based on the expected value 
(i.e., the theoretic mean) and the theoretic standard deviation (sigma) of the plotted data, 
which are computed differently for each type of data distribution.  For example, the center 
line for np charts is set equal to the mean of the binomial distribution with the control limits 
equal to the center line plus and minus three binomial standard deviations.  An alternative 
approach is to use probability-based control limits calculated so that the probability of falling 
between them is some desired value, typically somewhere in the vicinity of 99.73%.  Note 
that in the case of normal data both these methods yield the same (good) specificity of 0.9973 
for any single plotted value (i.e., the probability that any single in-control value correctly will 
be determined to be in-control) or equivalently a false alarm probability of 0.0027. 

There also are several more technical rationales for using 3-sigma limits.  From a multiple 
comparison Bonferroni-type perspective if a 3-sigma trial Xbar control chart contains 25 
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samples of historical data from an in-control process, then the overall probability of at least 
one false alarm is α = 1 - (0.9973)

25 ≈ 0.0654.  That is, the specificity of the overall chart is 1 
- α  = 0.9346 (implying, if anything, that perhaps something greater than 3-sigma limits 
might be used).  Additionally, a mathematical technique developed to determine the optimal 
control limits typically yields results between 2.5 and 3.5 sigma from the CL across a wide 
range of applications and costs in many industries, lending the convention of 3 standard de-

viations further justification [7, 24, 27-30].  Further research is needed to determine the ex-

tent to which these conclusions extend broadly to healthcare applications. 

In other applications, it periodically is suggested that other limits should be used in order to 
obtain a different tradeoff between sensitivity and specificity.  In many industries, therefore, 
an additional pair of lines called warning limits sometimes are plotted at two standard devia-

tions above and below the center line in order to provide earlier but less definite warnings of 
possible problems (i.e., greater sensitivity but lower specificity).  A typical response to val-

ues falling between the warning and control limits is to start investigating and searching for 
assignable causes on a smaller scale and with less urgency than if the control limits had been 
exceeded.  See Benneyan [7] for further discussion of these topics. 

Subgroup Size Selection and Chart Performance 

Like almost any other statistical method, subgroup sizes and sensitivity for control charts are 
intrinsically related to one another, with larger subgroup samples producing greater power to 
detect process changes - but at the expense of greater sampling cost or of less frequent sub-

groups.  Several guidelines therefore exist to help select an appropriate minimum subgroup 
size that will produce decent statistical properties, a reasonably symmetric sampling distribu-

tion, a non-zero LCL, and good sensitivity to detect rate changes or other process shifts. 

p and np Charts 

For np and p charts, the two most common rules-of-thumb are that the minimum subgroup 
size, n, should be large enough so that (rule 1) both 

np ≥ 5    and    n(1-p) ≥ 5 

are satisfied or equivalently 

n
p p  p  p  

max ,   
min( , ) 

≥ 
−

 


 

 

 
 = 

− 

5 

1

5 5 

1 

or that (rule 2) both 

n 
p 

≥ 
− 

ln(. ) 

ln( ) 

05 

1
 and n 

p 
≥ 

ln(. ) 

ln( ) 

05 

or equivalently 

n
p p

ln(. ) 

ln max( , ) 
≥ 

−[ ]
05 

1
 , 
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where p is the expected proportion of cases resulting in the medication error, surgical site in-

fection, or other adverse event being studied.  The first rule ensures a reasonably symmetric 
bell-shaped distribution with statistical properties and run rules performance similar to those 
for a normal distribution.  The second rule similarly avoids significant skewness and poor 
statistical properties by ensuring the control chart will not have a large number (no more than 
5% on average) of plotted points clustered at zero or the upper possible bound (1 and n for p 
and np charts, respectively).  Sometimes if data are scarce the first rule is relaxed to np ≥ 3 
and n(1-p) ≥ 3 and the second to n ≥ ln(.25)/ln(1-p) and n ≥ ln(.25)/lp(p), although these usu-

ally are the lowest that one should consider. 

As an illustration, for the surgical site infection rate in Figure 6 of 0.09 (9 out of every 100), 
the minimum subgroup size n using the first rule should be between 

n ≥ 
5 

0 09.
 = 55.6 and 

3 

0 09.
 = 33.3, 

or using the second rule 

n ≥ 
ln(. ) 

ln( . ) 

.

.

05 

1 09  

2 996 

0943− 
= 

−
−

 = 31.8. 

u and c Charts 

Similarly, for c and u control charts the two corresponding rules-of-thumb are that the mini-

mum subgroup size, n, should be between 

nλ ≥ 5  and nλ ≥ 3, 
or that 

n ≥ 
− ln(. )05

λ 
, 

where λ is the average number of occurrences per some common unit of calculation (such as 
the ventilator associated pneumonia rate per 100 device days or the needle stick rate per 100 
patient days).  To illustrate, for the catheter-associated infection rate in Figure 7 of 1.25 per 
every 100 catheter days, the minimum subgroup size using the first rule should be between 

n ≥ 
5 

1 25 100. /  days
 = 4.00 x 100 days = 400 catheter days 

and 

n ≥ 
3 

1 25 100. /  days
 = 2.40 x 100 days = 240 catheter days, 

or using the second rule 

n ≥ 
− =ln(. ) 

. /  

.

. /  

05 

1 25 100 

2 996 

1 25 100 days  days
 = 2.40 x 100 days = 240 catheter days. 
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Non-Zero LCL 

Note that for p, np, c, and u charts, if the lower control limit is equal to zero then, unless sup-

plementary rules are used (see below), detecting or verifying improvements in the form of rate 
decreases will not be possible.  In order for the LCL to be greater than zero, subgroup sizes 
80% to 200% larger than result from the above formulae often are required.  The minimum 
subgroup size, n, now must be large enough (rule 3) so that for p and np charts 

n 
k p 

p 
> 

−2 1( ) 

and for u and c charts 

n 
k> 

2 

λ
 , 

where k is the number of standard deviations used in the control limits (typically 3).  Addi-

tionally, if the occurrence rate p ≥ 0.5 then in order for the upper control limit of p and np 
charts to be able to detect rate increases 

n 
k p  

p 
> 

− 

2 

1

so that the UCL will be less than the upper possible bound of 1 and n, respectively.  In the 
above two examples, the minimum subgroup size for LCL > 0 (using k = 3) becomes 

n > 
3 1 09  

09 
91 0 

2 ( . ) 

.
.

− = 

=  92 

for the surgical site infection p control chart and 

n > 
3

1 25 100 
720 

2 

. /  days 
= 

=  721 

for the ventilator-associated pneumonia u control chart.  Table 3 summarizes the minimum 
recommended subgroup sizes for p, np, c, and u charts using these rules for a range of rates. 
Note that smaller values of the occurrence rates p or λ  (i.e., higher quality processes) result in 
larger required minimum subgroup sizes, presenting the ironic dilemma that better processes 
require more data to control them.  Performance of these charts to detect rate decreases using 
smaller subgroup sizes and supplementary rules is discussed below. 
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Table 3.  Recommended Minimum Subgroup Sizes 

Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3 r  = .75 r  = .5 r  = .25 

0 .0025 2 0 0 1  1 1 9 7  3 5 9 2  0 .025 2 0 0 1 2 0 3 6 1 0 .1  1 3 5 1 9 0 0 5 4 1 

0 .0050 1 0 0 1  5 9 8  1 7 9 2  0 .050 1 0 0 6 0  1 8 1 0 .2  3 3 8 2 2 5 1 3 6 

0 .0075 6 6 7 3 9 8 1 1 9 2  0 .075 6 7  4 0  1 2 1 0 .3  1 5 1 1 0 0 6 1  

0 .0100 5 0 0 2 9 9 8 9 2 0 .100 5 0  3 0  9 1  0 .4  8 5  5 7  3 4  

0 .025 2 0 0 1 1 9 3 5 2 0 .25  2 0  1 2  3 7  0 .5  5 5  3 6  2 2  

0 .050 1 0 0 5 9  1 7 2 0 .50  1 0  6  1 9  0 .6  3 8  2 5  1 6  

0 .075 6 7  3 9  1 1 2 0 .75  7  4  1 3  0 .7  2 8  1 9  1 2  

0 .100 5 0  2 9  8 2  1 .00  5  3  1 0  0 .8  2 2  1 5  9  

0 .125 4 0  2 3  6 4  1 .25  4  3  8  0 .9  1 7  1 2  7  

0 .150 3 4  1 9  5 2  1 .50  4  2  7  1 .0  1 4  9  6  

0 .175 2 9  1 6  4 3  1 .75  3  2  6  1 .1  1 2  8  5  

0 .200 2 5  1 4  3 7  2 .00  3  2  5  1 .2  1 0  7  4  

0 .225 2 3  1 2  3 2  2 .25  3  2  5  1 .3  8  6  4  

0 .250 2 0  1 1  2 8  2 .50  2  2  4  1 .4  7  5  3  

0 .275 1 9  1 0  2 4  2 .75  2  2  4  1 .5  7  4  3  

0 .300 1 7  9  2 2  3 .00  2  1  4  1 .6  6  4  3  

0 .325 1 6  8  1 9  3 .25  2  1  3  1 .7  5  4  2  

0 .350 1 5  7  1 7  3 .50  2  1  3  1 .8  5  3  2  

0 .375 1 4  7  1 6  3 .75  2  1  3  1 .9  4  3  2  

0 .400 1 3  6  1 4  4 .00  2  1  3  2 .0  4  3  2  

0 .425 1 2  6  1 3  4 .25  2  1  3  2 .1  4  3  2  

0 .450 1 2  6  1 2  4 .50  2  1  3  2 .2  3  2  2  

0 .475 1 1  5  1 0  4 .75  2  1  2  2 .3  3  2  2  

0 .500 1 0  5  1 0  5 .00  1  1  2  2 .4  3  2  1  

1 np  and p  chart rules: 2 c and u chart rules: 3 Xbar  chart rule: 
   Rule 1:  n 5/min( p , ( 1 -p ))    Rule 1:  n 5/λ n (( k -Z r ) /δ ) 2 

   Rule 2:  n ln(.05)/ln(max( p , ( 1 -p ))) Rule 2:  n -ln(.05)/λ

    Rule 3:  n  > k 
2*max ( (1 -p ) /p , p / ( 1 -p ))  Rule 3:  n  > k 

2 / λ 

k  = standard deviation multiple,  p  = binomial rate,  λ  = Poisson rate,  δ = mean shift size to detect,  Z r  = standard normal value with upper tail probability 

np  or p  control chart c  or u  control chart Xbar  control chart 

Subgroup size 
3 

Subgroup Size2 Subgroup Size1 Defect rate 
( p ) 

Shift size    
( δ sigma) 

Rate per    
unit (λ ) 

≥ 

≥ 

≥ 

≥ 

≥

Xbar Charts 

The specificity of Xbar charts with any subgroup size always will be 0.9973 (using k = 3) if 
the data are normally distributed.  In many healthcare applications, however, continuous data 
such as times or delays can be naturally skewed, although subgroups of size n ≥ 10 usually 
will produce near exact normality due to the central limit theorem.  The impact on chart per-

formance if subgroup averages are plotted therefore is minimal [31], especially as n in-

creases, another strength of Xbar charts.  Logarithmic, square root, and other transformations 
also are possible, although seeking the best empirical transformation for out-of-control data 
can be misleading. 

An appropriate subgroup size for Xbar charts also can be determined by selecting a desired 
probability, r, that the next subgroup average will fall outside the control limits if the process 
mean shifts by a certain amount, δ, which yields the bound 

n 
k z  r≥ 

−
 

 
δ 

2 

, 

where zr is the standardized normal coordinate corresponding to an upper tail probability of r 
and δ is the number of standard deviations equivalent to the magnitude of the shift in either 
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direction that we want to detect.  To illustrate, for the decision-to-incision Cesarean data in 
Figure 5 with a mean and standard deviation of 46 and 5 minutes, respectively, in order to 
detect a shift with 0.5 probability (r = 0.5, z0.5 = 0) from the mean of 46 minutes to 49 min-

utes (δ = (49-46)/5 = 0.6 standard deviations), the subgroup size must be 

n 
. 

≥ 
−

 
 
 = 

3 0  

0 6  
25 

2 

. 

To detect the same shift with 0.25 probability (z0.25 = .6745), the subgroup size must be 

n ≥ 3 6745 

0 6  
15 02 

2− 
 

 
 =. 

. 
.

= 16. 

Table 3 summarizes the subgroup sizes necessary for various degrees of mean shifts in order 
to achieve single-point detection probabilities of .25, .5, and .75.  These probabilities equate 
to averages of 1/.25 = 4, 1/.5 = 2, and 1/.75 = 2 subgroups plotted from the time the process 
changes until a value exceeds the control limits, any of which typically are considered to be 
good chart performance. 

Chart Sensitivity 

The sensitivity of an Xbar chart with a subgroup size of n to detect other magnitudes of shifts 
in the process mean can be calculated using the following formula 

1− −( ) + − −( )Φ Φk n k nδ δ , 

where k and δ are defined as previously and Φ(z) is the standard normal cumulative prob-

ability evaluated at z, P(Z<z).  The operating characteristic (OC) curves in Figure 9a illustrate 
the power of Xbar charts for several subgroup sizes using k = 3 and k = 2 control limits 
(equating to specificities of .9973 and .9545, respectively).  The horizontal axis represents 
the magnitude of the mean shift, δ, with the probability of a subgroup value falling between 
the control limits plotted along the vertical axis.  The sensitivity associated with other values 
of n can be approximated by interpolation. 

Corresponding power curves for np, p, c, and u control charts will be different for any par-

ticular in-control rate and must be computed numerically in the binomial (p, np) case as 

P LCL X UCL 
n

x
p px n x 

x LCL 

UCL 
( ) ( ) 

[ ] 

[ ]
≤ ≤ = 

 
  

 
  

− − 

= + 

− 

∑ 1 1 1 

and in the Poisson (u, c) case as 
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P LCL X UCL 
e 

x

x 

x LCL 

UCL 
( ) 

![ ]

[ ]
≤ ≤ = 

−

= + 

− 

∑ 
λ λ1 

1  , 

where [ ]
+
 amd [ ]

-
 denote the integer round down and round up functions, respectively, and p1 

and λ1 denote the values of the shifted rates.  Figure 10 illustrates the OC curves correspond-

ing to the earlier p (10a) and u (10b) control charts in Figures 6 and 7, respectively, for vari-

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Shift in Mean (number standard deviations)

 k = 3 

 k = 2 

0 

00 

0 

umbers on curves indicate subgroup size 
Italic subgroup sizes are for k = 2 case) 

a .  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Shift in Mean (number standard deviations)

 8 consecutive values on same side of CL 

 13 of 14 consecutive values on same side of CL 

0 

0 0 

0 

umbers on curves indicate subgroup size 
Italic subgroup sizes are for 13 of 14 rule) 

Assumes normality conditions met) 

. 

Figure 9.  Operating Characteristics of Xbar Charts 



Benneyan: Statistical Process Control Charts page 19 

ous sample sizes, including those specified by the above rules.  Again, chart performance 
for other values of n can be approximated by interpolation.  Note in each case that the OC 
curves exhibit power to detect rate decreases only when the sample size equals or exceeds 
that specified by rule 3.  All other OC curves, plotted in solid lines, converge to 1.0 as the 
shifted rate converges to 0.  As would be expected, the specificity for values of n lower than 
indicated by rules 1 and 2 also is less than when these rules are satisfied. 
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Figure 10.  Operating Characteristics of p and u Charts 
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Figure 11.  Detection Probability of Runs-Beneath-CL Rule of p and u Charts with LCL = 0 

The sensitivity of all chart types can be improved using the supplementary "between-limit" 
rules mentioned previously, although at the expense of reduced specificity [32].  These rules 
also will add power to detect rate decreases for np, p, c, and u control charts with lower con-

trol limits of zero.  For example, one of the most commonly used rules is "8 consecutive val-

ues on the same side of the center line".  Figure 11 illustrates the probability using this rule 
that a sequence of 8 consecutive subgroups will not generate an out-of-control signal for the 
earlier p (11a) and u (11b) charts in Figures 6 and 7.  Note that small subgroup sizes with 
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LCL = 0 now yield power to detect rate decreases.  Similarly, Figure 9b illustrates the corre-

sponding Xbar chart in-control probabilities for this and a second commonly used rule, if 
used independently of one another.  In general, the more rules that are used together, the 
greater the improvement in sensitivity but also the greater the frequency of false alarms. 

Other Types of Control Charts 

Control Charts for Low Rates & Infrequent Data 

As shown in Table 3, when dealing with rare events standard control charts can become 
problematic in terms of the amount of data and time required until a subgroup value can be 
plotted.  This can result in feedback becoming available too infrequently to be able to make 
rational process decisions in a timely manner.  In such cases, a simple alternative to plotting 
the number of occurrences per time period on a p or u chart instead is to use a g-type of con-

trol chart for the number of cases or the amount of time between occurrences.  These charts 
are simple to use, when dealing with rare events have better statistical properties for detect-

ing rate increases (using probability limits) or decreases than conventional charts, and are 
particularly useful for verifying improvements [33-35]. 

Figure 12 illustrates a recent g control chart for the number of procedures between prevent-

able complications.  Note that for this type of chart, higher rather than lower values equate to 
process improvements and longer times between adverse events.  The formulae, statistical 
performance, and subgroup size considerations for these charts recently were discussed in 
detail by Benneyan [33, 36].  Other examples of this type of chart include the number of sur-

geries between surgical site infections, the number of patients between catheter-associated 
infections, the number of days between adverse drug events, the number of days between 
needle sticks, and so on. 
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Figure 12.  Example of g Control Chart of Number of Procedures 
Between Preventable Complications 
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Non-Shewart Control Charts 

Although beyond the scope of this article, several other types of control charts also exist, in-

cluding moving average (MA), exponentially weighted moving average (EWMA), cumulative 
sum (Cusum), and cumulative score (Cuscore) charts.  While more complicated to use, each of 
these types of charts tend to have certain advantages over the simpler Shewhart type of charts, 
such as being more powerful for detecting or verifying smaller process changes, being more 
appropriate for seasonal or auto-correlated data, or integrating monitoring with feedback ad-

justment (such as for managing the blood glucose of a diabetic patient).  Figure 13 illustrates 
an EWMA control chart (using a smoothing weight of 0.2) for the same complication data as 
shown above, with the small rate decreases around samples 20 and 36 now being much more 
visually evident than in Figure 12.  This type of chart is one of a few methods also often used 
to appropriately deal with autocorrelated or seasonally cyclic processes [37-39]. 
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EWMA: Exponentially weighted moving average 

Figure 13.  Example of EWMA Control Chart of Procedures Between Complications 

Discussion 

As organizations begin to use control charts with greater frequency, several implications on 
process management and the use of data begin to emerge.  Achieving consistent levels of pa-

tient care is especially critical in clinical situations where a lack of statistical control can have 
direct consequences on risk management and liability.  For many organizations this effort 
may mean transitioning from traditional orientations largely focused on external reporting 
and regulatory adherence to orientations more focused on continual process analysis and re-

design.  This effort also will require a focus as much on processes as on outcomes, and there-

fore different data elements in different formats may be necessary. 

In many applications, instead of current practices of reporting data in large infrequent sam-

ples (such as quarterly), data should be collected in smaller samples much more frequently 
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(such as weekly or monthly) and plotted on an appropriate control chart.  Much of the aggre-

gate data currently collected for various "report cards" should be plotted and evaluated for 
process stability on control charts in more frequent and smaller samples.  The meaning and 
interpretation of standards and benchmarks also now is much less clear, such as a standard 
Cesarean delivery rate of 15%.  Should an organization’s monthly rate never exceed 15%, it’s 
long-term center line of a p control chart equal 15%, the upper control limit be less than 15%, 
or something else? 

One reasonable answer is that a process must be in-control (otherwise, of course, there is no 
true rate to even consider) and that the center line should equal the standard rate, in this ex-

ample 0.15.  This would mean that the long-term rate (i.e., the center line) is equal to the 
standard, although of course approximately half of the plotted subgroup values will fall 
above the centerline.  (This type of control chart, although less commonly used, actually is 
called a "standards given" control chart [22-24].)  When dealing with low rates, it also can be 
advantageous to collect data on the number of cases or the amount of time between adverse 
events, rather than monthly rates.  Perhaps more generally, it becomes clear that the purpose 
of data largely is to understand and improve process performance, rather than to evaluate, 
reward, or punish individual performance. 

As important as it is to use SPC, it is equally important to use it correctly [40-41].  Use of 
incorrect charts or formulae in the past has resulted in a failure to detect infection rate in-

creases and changes in clinical laboratory equipment, obvious liability concerns.  Other 
common errors include using insufficient amounts of data when estimating control limits, 
misuse of "short-cut" formulas and empirical transformations, over-use and inappropriate use 
of "individuals" charts such as for discrete or non-normal data, and using standard charts 
when combining data from non-homogeneous processes [25].  In some situations, it also is 
important to properly adjust for seasonality, case mix, severity, age, gender, and so on.  Al-

though beyond the scope of the present article, regression, logistic regression, and risk-

adjusted SPC methods also have been proposed for such scenarios (although further mathe-

matical development and research is needed in this area) [7]. 

More generally, organizations sometimes get swept up in creating control charts simply for 
the sake of creating charts, including widespread software-generated charts of almost all 
available data, without much planning and follow-through on how the resultant information 
will be used.  Using SPC requires time and effort, and there is little point in investing these 
resources unless results will be used to inform and improve.  Better success tends to result 
from focusing on a few key concerns and then expanding one’s use of SPC based on these 
experiences and the knowledge gained. 
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